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Abstract

This paper studies a signaling model in which a strategic player determines the cost

structure of signaling. A principal chooses a price schedule for a product, and an agent

with a hidden type chooses how much to purchase as a signal to the market. When

the market observes the price schedule, the principal charges monopoly prices, and the

agent purchases less than the first-best. In contrast, when the market does not observe

the price schedule, the principal charges lower prices, and the agent purchases more

than in the observed case; those of the highest types purchase more than the first-best.

In terms of payoffs, the principal gains lower profits, whereas the agent obtains higher

utility than in the observed case. The model can be applied to schools choosing tuition,

retailers selling luxury goods and media companies selling advertising messages.

1 Introduction

In classic signaling models, the sender’s preference depends only on his intrinsic type. This

paper investigates situations in which the signaling cost also depends on the choice made by

a third-party strategic player. For example, when a student obtains education to signal his

ability, the university sets the tuition; when a consumer purchases a luxury good to signal
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his wealth, the retailer chooses the price; when a seller incurs advertising expenses to signal

a product’s quality, the media company determines the cost of advertising messages. A key

observation is that since signaling cost is endogenous, how receivers interpret and respond

to the sender’s signal will depend on whether they observe the third party’s choice.

In this paper, we derive the optimal price schedule for a principal selling a product to

an agent who is endowed with a hidden type and chooses how much to purchase as a signal

to the market. The equilibrium depends critically on whether the market observes the price

schedule. When the market observes the price schedule, the principal internalizes the agent’s

signaling incentive when screening the agent, leading to a downward distortion in quantity.

In contrast, when the market does not observe the price schedule, the agent is more sensitive

to price changes, since the market will attribute a difference in quantity to agent preference

heterogeneity. This provides the principal with an incentive to lower prices. In equilibrium,

the agent chooses a higher quantity and obtains higher utility than in the observed case,

whereas the principal gains lower profits than in the observed case.

This paper has meaningful implications for the price transparency of goods that create

signaling values for consumers. In the case of job market signaling, our model suggests that

education is more costly and students are worse off when the tuition scheme (more precisely,

the net prices for school) is observed by employers than otherwise. This implies that policies

that improve the transparency of the net prices at colleges and universities, e.g., U.S. Code

§ 1015a,1 may unintentionally raise education expenses and harm students. This is because

these policies allow schools to commit to high prices and not dilute the signaling value of a

high-cost education by means of fee waivers or financial aid.

In addition, our model implies that a signaling good will yield higher profits if the seller

can make the price publicly observed and commit to it. This echoes some real-world business

practices. For example, luxury brands, such as Louis Vuitton, Tiffany and Hermes, enjoy a

reputation of never or very rarely being on sale. This helps the sellers better commit to high

prices, thereby reinforcing the signaling values of luxury goods. In the advertising industry,

the high costs of each year’s Super Bowl commercials are widely reported, thereby enhancing

the signaling value of these costly commercials; in China, the TV station CCTV broadcasts

the auctions for its popular TV show commercials to accentuate their signaling values.

For the purpose of exposition, we present our model in conformity with the seminal work

of Spence (1973) with productive education. We extend that model by adding a pre-signaling

1Since 2011, American colleges and universities have been required to provide reasonable estimates of the

net prices, including tuition, miscellaneous fees and personal expenses, that students will pay for school. See

“U.S. Code § 1015a - Transparency in college tuition for consumers” for details.
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stage in which a school (principal) sets its tuition scheme and a worker (agent) chooses his

education level to signal his privately known ability (type) to competing employers (market).

In Section 3, as a reference point, we briefly revisit Spence’s model by fixing tuition at zero.

This is the case when schools are competitive and set the price equal to the marginal cost. In

the least-cost separating equilibrium, all types except the lowest one choose more education

than the first-best, as they attempt to separate themselves from lower types.

In Section 4, we introduce the school and study the case in which employers observe the

tuition scheme. In the school-optimal separating equilibrium (which is also the least-cost

separating equilibrium), all types except the highest one choose less education than the first-

best. This result is in contrast to that of Spence’s model. The downward distortion is due to

the school’s screening. Having a cost advantage in education, a higher type can secure higher

utility than a lower type by choosing the same education level. To incentivize truth-telling,

the school must leave information rents to the worker, meaning that the marginal profit is

less than the social surplus. Thus, the school under-supplies education.

While this mechanism is similar to screening models such as Mussa and Rosen (1978),

our model also incorporates signaling, which can mitigate the downward distortion caused

by screening. To illustrate, suppose that employers can observe the worker’s ability, thereby

eliminating signaling. When a higher type imitates a lower type, he not only incurs a lower

total cost than the latter but also obtains a higher wage due to his higher ability. The second

effect means that the worker can extract more information rents from the school; thus, the

screening distortion is worse compared to when signaling is present.

In Section 5, we turn to the case in which employers do not observe the tuition scheme.

In the school-optimal separating equilibrium (which is also the least-cost separating equilib-

rium), the school sets lower tuition rates and the worker chooses more education than when

employers observe the tuition scheme. This difference is driven by a signal jamming effect.

Because employers cannot observe the actual cost of education, they do not know whether a

difference in education level is caused by a tuition change or worker cost heterogeneity. For

example, suppose that the school lowers tuition so that the worker obtains more education

than in the initial state. When employers observe the tuition scheme, they cut wages, since

any education level now corresponds to a lower-ability worker. This dampens the worker’s

demand for additional education. In contrast, when employers do not observe the tuition

scheme, they do not adjust wages despite that tuition changes. Consequently, the demand

for education is more elastic, making the price cut relatively more profitable for the school.

In equilibrium, employers correctly anticipate the school’s incentive to cut tuition and offer
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lower wages, as education is inflated. This reduces the worker’s willingness to pay, and thus,

the school achieves lower profits when employers do not observe the tuition scheme.

Since the school is worse off when employers do not observe the tuition scheme, one may

wonder why the school does not disclose tuition to employers. The reason is that the school

cannot credibly announce the price absent intervention such as mandatory disclosure. Note

that once employers believe the school’s announcement, the latter would secretly cut prices

to make a profitable deviation. Such an observation may explain the fact that while the listed

tuition at American colleges and universities is rising, these schools offer students various and

inclusive forms of financial aid.2 The rationale is that employers cannot easily observe the

details of such financial aid and thus do not know the actual cost of education. By raising the

published tuition while simultaneously reducing the undisclosed net prices through stipends,

schools persuade employers that their students are smarter than is actually the case, thereby

allowing the schools to collect higher revenues from students.

Finally, in Section 6, we discuss the application and extension of the model and conclude

our paper. All omitted proofs are provided in the Appendix.

1.1 Related Literature

This paper is most closely related to the literature on signaling. The paper contributes to

the literature on signaling games by allowing a strategic player to affect signaling cost. In

classic signaling models (e.g., Spence 1973, Riley 1985, Milgrom and Roberts 1986, Bagwell

and Riordan 1991, Bagwell and Bernheim 1996), with an exogenous cost function, signaling

activity gives rise to over-investment in costly actions. Spence (1974), Ireland (1994) and

Andersson (1996) suggest taxing signaling activity to undo the signaling effect to restore the

first-best. The associated tax scheme is thus the welfare-maximizing tax on signals. In our

model, when the market observes the price schedule, we solve for the profit-maximizing tax

on signals, which “over-taxes” signaling and causes a downward distortion in quantity.

The paper is also closely related to the literature on screening. Screening models, such as

Mussa and Rosen (1978) and Maskin and Riley (1984), typically assume that buyers derive

intrinsic utility from consuming the seller’s product. Our model differs in the sense that the

2According to the reports by The College Board (www.collegeboard.org): “from 2007-08 through 2010-11,

the percentage of institutional grant aid that helped to meet students’ financial need at private nonprofit

four-year colleges and universities ranged from a low of 90% to a high of 93%” (Trends in Student Aid

2011, The College Board); “between 2008-09 and 2013-14, the $3,800 increase (in 2013 dollars) in average

institutional grant aid for first-time full-time students at private bachelor’s institutions covered 95% of the

$4,000 increase in tuition and fees” (Trends in Student Aid 2016, The College Board).
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product has further a signaling value, and a buyer’s utility depends on the information that

the product conveys. As such, our model contains both screening and signaling and clearly

states the interaction between the two forces. Calzolari and Pavan (2006) study information

disclosure in a sequential screening model. They show that the upstream principal leaves

more information rents to the agent if she discloses information about the agent’s type to

the downstream principal. Analogously, in our model, the principal leaves more rents to the

agent than she would otherwise if the market can observe the agent’s type, which is perfect

information disclosure. The difference is that the market in our model is competitive; thus,

unlike in their model, the disclosure of the agent’s type creates no value for the market.

The model is closest to Rayo (2013). This paper also considers a principal who sells a

signal to an agent with a hidden type, assuming that the principal’s mechanism is observed

by the market. Whereas we assume additive separability in the market’s action (e.g., wage)

and the agent’s type (e.g., ability), Rayo’s adopts a multiplicative structure, and thus, the

principal’s revenue depends on whether the allocation of signal is separating or pooling; this

necessitates the use of novel screening techniques. The contribution of our paper is to study

the case in which the market cannot observe the principal’s mechanism, and comparing this

to the observed case as well as a variety of other benchmarks. This enables us to assess how

the transparency of pricing affects the degree of signaling and welfare.

The unobserved tuition case belongs to the class of signal jamming models proposed by

Fudenberg and Tirole (1986). For example, in Holmström (1999), the labor market cannot

distinguish the impact of the worker’s ability from that of his effort on output. In response,

the worker works harder to improve the market’s perception of his ability. In comparison,

in our model, the labor market cannot distinguish the impact of the worker’s ability from

that of tuition on education level. Thus, the school has an incentive to secretly cut tuition,

thereby improving the market’s perception and stimulating demand. In Chan, Li, and Suen

(2007), a school has an incentive to inflate grades to improve the market’s perception of its

students. They show that grade inflation features strategic complements when the qualities

of students are correlated across schools. In contrast to their model, our model incorporates

screening in addition to signaling, as the school cannot observe its students’ abilities.

Finally, our paper relates closely to the literature on intermediate price transparency.

Inderst and Ottaviani (2012) shows how product providers compete through commissions

paid to consumer advisers. Commissions bias advice; thus, an increase in a firm’s commission

reduces consumers’ willingness to pay if they observe the commission. Analogously, in our

model, cheaper tuition reduces the signaling value of education, and thus, tuition cuts are
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less effective at stimulating demand than they would be otherwise when employers observe

tuition. In Janssen and Shelegia (2015), a manufacturer chooses a wholesale price, retailers

choose retail prices, and consumers search for the best deal. They argue that retailers are less

sensitive to wholesale price changes when consumers do not observe the price than otherwise,

as uninformed consumers are more likely to keep searching when the retail price raises. By

contrast, in our model the worker is more sensitive to tuition changes when employers do not

observe the tuition scheme than otherwise, as uninformed employers will have better (worse)

beliefs over the worker’s ability if they observe a higher (lower) education level.

2 The Model

Players and actions. There is a single school (principal), a worker (agent) and multiple

identical and competing firms, also referred to as the labor market. At the beginning of the

game, the school chooses a tuition scheme T (z) : R+ → R+, where z stands for education

level and T (z) is the tuition at z. Subsequently, the worker decides how much education to

purchase from the school based on the tuition scheme. For simplicity, we do not explicitly

model firms’ actions; rather, we directly assume that they offer the worker a wage equal to

his expected productivity (see below).

The worker’s productivity depends on his ability (type) θ and his education choice z.

Specifically, θ is a random variable, which distributes over the interval [θ, θ̄], according to

a distribution function F (θ) with a positive density function f(θ). Denote by Q(z, θ) the

productivity of a type-θ worker having education level z. We assume that Q(z, θ) is twice

differentiable and increasing in both arguments. Formally, Qz(z, θ), Qθ(z, θ) > 0 if z > 0.

We also assume that a worker with no education has zero productivity irrespective of his

ability; that is, Q(0, θ) ≡ 0. We consider this assumption realistic since many jobs require a

minimal education level. For example, a lawyer candidate must graduate from a law school,

and medical school education is prerequisite for being a licensed practitioner of medicine.

In the Appendix, as a supplementary exercise, we present the analysis for the case in which

education is unproductive.

Information. The worker’s education level is publicly observed. However, neither the school

nor the labor market observes the worker’s ability, but both know its distribution. In this

paper, we mainly study two variants of the model: in the observed case, the tuition scheme is

observed by the labor market; in the unobserved case, it is unobserved by the labor market.

In each case, the labor market announces and commits to a wage schedule W (z) : R+ → R+,
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based on the available information.

Payoffs. We normalize the school’s marginal costs of educating to zero and abstract from

fixed costs. Suppose that the school chooses some tuition scheme T (z); then, let z(θ;T ) be

the education level chosen by a type-θ worker under T (z). Given the tuition scheme T (z)

and the wage schedule W (z), a type-θ worker who chooses education level z has utility:

U(z, θ) ≡ W (z)− T (z)− C(z, θ),

where C(z, θ) is the worker’s cost of effort for education. We assume that C(z, θ) is twice

differentiable, increasing and strictly convex in z, and unbounded: Cz(z, θ) > 0 if z > 0,

and Czz(z, θ) > k for some k > 0. Moreover, the standard single-crossing property holds:

Czθ(z, θ) < 0 if z > 0. This condition captures the feature that a higher-ability worker

has lower marginal effort costs than a lower-ability worker. We also normalize C(0, θ) to 0

for all θ ∈ [θ, θ̄]. This implies that, combined with Cz(z, θ) > 0 and Czθ(z, θ) < 0 if z > 0,

Cθ(z, θ) < 0 if and only if z > 0. Finally, we assume that the worker can obtain a zero-utility

outside option by acquiring no education and not entering the labor market.

First-best benchmark. Define S(z, θ) as the social surplus function, i.e.,

S(z, θ) = Q(z, θ)− C(z, θ).

Assume that S(z, θ) is strictly quasiconcave in z and has a unique maximizer zfb(θ) ≥ 0 for

all θ ∈ [θ, θ̄]. Then, the first-order condition implies that

Sz(z
fb(θ), θ) = Qz(z

fb(θ), θ)− Cz(zfb(θ), θ) = 0. (2.1)

To ensure that zfb(θ) is increasing, we assume further that Szθ(z, θ) > 0 if z > 0. Then, the

monotonicity holds according to Milgrom and Shannon (1994, Theorem 4). It is also readily

confirmed that S(zfb(θ), θ) is increasing in θ.

Equilibrium. We use perfect Bayesian equilibrium as the solution concept throughout the

paper. In the observed case, an equilibrium consists of the school’s tuition scheme T o(z)

and conditional on any tuition scheme T (z), the worker’s education function zo(θ;T ) and

the labor market’s wage schedule W o(z;T ), such that

(i) For each T (z), the following holds: (a) given W o(z;T ), zo(θ;T ) maximizes U(z, θ); (b)

W o(z;T ) = E[Q(z, θ)|zo(θ;T )] such that the labor market’s posterior belief about the

worker’s ability, or simply the market belief, is updated using Bayes’ rule.

7



(ii) Given zo(θ;T ), T o(z) maximizes the school’s expected profit, i.e.,

T o(z) ∈ argmax
T (z)

∫ θ̄

θ

T (zo(θ;T ))dF (θ).

In the unobserved case, the market’s inference is independent of the actual tuition scheme

but is conditional on a conjectured scheme; in equilibrium, the conjecture is correct. In this

case, an equilibrium consists of a tuition scheme T u(z) and a wage schedule W u(z) (more

precisely, W u(z;T u)), and conditional on any T (z), an education function zu(θ;T ), such that

(i) Given W u(z), for each T (z), zu(θ;T ) maximizes U(z, θ); W u(z) = E[Q(z, θ)|zu(θ;T u)]
such that the market belief is updated using Bayes’ rule.

(ii) Given zu(θ;T ), T u(z) maximizes the school’s expected profit, i.e.,

T u(z) ∈ argmax
T (z)

∫ θ̄

θ

T (zu(θ;T ))dF (θ).

Note that the equilibrium conditions have one important difference between the observed

and unobserved case: in the unobserved case, the market belief needs to be correct only on

the equilibrium path, whereas in the observed case, the market belief has to be correct

following every tuition scheme that is chosen by the school.

Equilibrium selection. For both the observed and unobserved case, while there possibly

exist multiple equilibria, we focus on the school-optimal separating equilibrium, that is, the

equilibrium that yields the highest payoff for the school, provided that on the equilibrium

path, z(θ) is one-to-one if z(θ) > 0.3 To ensure that a separating equilibrium indeed exists,

we impose an assumption on the cost function C(z, θ) and the distribution function F (θ).

Assumption 2.1. Czθθ(z, θ) ≥ 0 and F (θ) has a non-decreasing hazard rate.

The reason that we select the school-optimal separating equilibrium is because in Spence’s

model, the unique equilibrium that survives the D1 refinement (Banks and Sobel 1987) is

the least-cost separating equilibrium (Riley 1979) in which z(θ) is one-to-one and the lowest

type θ chooses the first-best zfb(θ).4 In the school-optimal separating equilibrium, given

the equilibrium tuition scheme, the continuation game constitutes the least-cost separating

3We do not impose any restriction on z(θ) off the equilibrium path.
4Since θ is the worst market belief, the lowest type does not fear further punishment from deviating to its

full-information optimal education level. This initial condition leads to the separating equilibrium in which

the worker obtains the least education.
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equilibrium, thereby allowing us to compare the associated equilibrium predictions with that

of Spence’s model. Moreover, in a discrete-type version of the model, a pooling equilibrium,

in which all participating types choose an identical education level, does not exist in either

case whenever the proportion of the highest type is sufficiently large.5 Hence, we consider

the school-optimal separating equilibrium a reasonable equilibrium to study. In Sections 4

and 5, we will discuss equilibrium selection in greater detail.

Finally, given the equilibrium selection rule, one can easily conclude that the school has

a higher equilibrium payoff in the observed case than in the unobserved case, as it can secure

a weakly higher expected profit in the observed case by maintaining T u(z). In what follows,

we apply the revelation principle to simplify the equilibrium characterization for both cases.

2.1 Communication Mechanisms

Appealing to the revelation principle, we consider communication mechanisms between the

school and worker in both the observed and unobserved case. It is without loss of generality

to adjust the timing as follows. First, the school offers a contract 〈z(θ), T (z)〉 to the worker.

Then, the labor market publishes a wage schedule W (z) based on the information available:

in the observed case, it observes the contract; in the unobserved case, it does not. Finally, the

worker reports his type to only the school. Reporting a type θ̂, the worker obtains education

level z(θ̂), pays tuition T (z(θ̂)) and then receives wage W (z(θ̂)).

Worker’s problem. In both cases, given a contract 〈z(θ), T (z)〉 and the associated wage

schedule W (z), a type-θ worker chooses a report θ̂ to maximize his utility

U(θ̂, θ) = W (z(θ̂))− T (z(θ̂))− C(z(θ̂), θ).

The mechanism {〈z(θ), T (z)〉,W (z)} is incentive compatible if the worker is willing to truth-

fully report his type and is individually rational if the worker obtains a non-negative utility

level. A type-θ worker’s equilibrium payoff is represented by U(θ) ≡ U(θ, θ).

School’s problem. In the observed case, the school chooses a contract to maximize its

expected profit subject to incentive compatibility, individual rationality, and the market

5Suppose that, in either the observed or unobserved case, a pooling equilibrium exists such that all

participating types choose the same education; then, the equilibrium wage is a constant which equals the

average productivity, and the equilibrium tuition is a fixed fee and makes the lowest participating type just

indifferent. But whenever the proportion of the highest type is sufficiently large, it is optimal for the school

to serve only the highest type and exclude all lower types, leading to a contradiction.
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belief being correct. In the unobserved case, since the market’s inference is independent of

the school’s choice, given the wage schedule, the school chooses a contract to maximize its

expected profit subject to incentive compatibility and individual rationality.

Preliminaries. In both cases, an allocation 〈z(θ), U(θ)〉 is implementable if it is incentive

compatible and individually rational. Appealing to Mas-Colell, Whinston, and Green (1995,

Proposition 23.D.2), we characterize all implementable allocations by the following lemma.

Lemma 2.1. In both cases, an allocation 〈z(θ), U(θ)〉 is implementable if and only if

(i) z(θ) is non-decreasing.

(ii) Define θ0 ≡ inf{θ|z(θ) > 0}; then, for θ > θ0,

U(θ) = U(θ0) +

∫ θ

θ0

−Cθ(z(s), s)ds

subject to U(θ0) ≥ 0.

By Lemma 2.1, we can rewrite the school’s problem for both cases. Note that incentive

compatibility means that T (z(θ)) = W (z(θ))−C(z(θ), θ)−U(θ) and that U(θ0) is optimally

set to 0. Substituting and integrating by parts, the school’s problem can be stated as

max
z(θ)

∫ θ̄

θ0

{
W (z(θ))− C(z(θ), θ) +

1− F (θ)

f(θ)
Cθ(z(θ), θ)

}
dF (θ) (2.2)

subject to z(θ) being non-decreasing.

In the observed case, correctness of the market belief means that W (z) = E[Q(z, θ)|z(θ)]

for any implementable allocation z(θ) that the school chooses. Then, from the law of total

expectation, Program (2.2) is equivalent to

max
z(θ)

∫ θ̄

θ0

{
S(z(θ), θ) +

1− F (θ)

f(θ)
Cθ(z(θ), θ)

}
dF (θ) (2.3)

subject to z(θ) being non-decreasing. Intuitively, because firms break even in expectation,

the school maximizes the expected difference between social surplus and consumer surplus,

as in Mussa and Rosen (1978) or Maskin and Riley (1984). It suffices to solve Program (2.3)

for the equilibrium characterization of the observed case. If the solution zo(θ) is increasing

over [θ0, θ̄], then we obtain the school-optimal separating equilibrium.

In the unobserved case, without loss of generality, the school chooses an allocation z(θ),

while simultaneously, the labor market chooses a wage schedule W (z). Then, the equilibrium

conditions can be simplified as follows: (i) given W u(z), zu(θ) solves the school’s problem

in (2.2); (ii) W u(z) = E[Q(z, θ)|zu(θ)] such that the market belief is updated using Bayes’

rule. In the case of multiple equilibria, we select the school-optimal separating equilibrium.
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2.2 A Simple Example with Two Types

To develop simple intuitions for our general results, we establish a numerical example with

binary types. We assume that θ ∈ {θL, θH} with 0 < θL < θH and that each type is realized

with equal probability. We also assume that Q(z, θ) = θz and C(z, θ) = z2/(2θ). It is readily

confirmed that Assumption 2.1 holds in this example.

We first study the observed case. Suppose that the contract {(zoL, T oL), (zoH , T
o
H)} solves

the school’s problem and that the associated wage schedule is given by {W o
L,W

o
H}. Then,

incentive compatibility and individual rationality imply that

C(zoL, θL)−C(zoL, θH) ≤ U(θH)− U(θL) ≤ C(zoH , θL)− C(zoH , θH), (IC)

U(θi) = W o
i − T oi − C(zoi , θi) ≥ 0, i = L,H. (IR)

Note that T oi = W o
i −C(zoi , θi)−U(θi), i = L,H; thus, the school’s expected profit equals

Πo = 0.5 (T oL + T oH) = 0.5 [W o
L +W o

H − C(zoL, θL)− C(zoH , θH)− U(θL)− U(θH)] .

As is standard in the literature, both the downward IC and the low type’s IR constraints are

binding. Moreover, a correct market belief means that W o
L +W o

H = θLz
o
L + θHz

o
H regardless

of whether it is separating (zoL 6= zoH). Substituting these results and the model assumptions

into Πo, we write the school’s problem as follows:

max
zL,zH

θLzL −
z2
L

2θL
− (θH − θL)z2

L

2θLθH
+ θHzH −

z2
H

2θH
s.t. zH ≥ zL.

Then, the first-order conditions imply that

zoL =
θHθ

2
L

2θH − θL
< θ2

L = zfbL and zoH = θ2
H = zfbH .

Since zoL < zoH , we obtain the school-optimal separating equilibrium. In this equilibrium,

the low type chooses less education than the first-best, while the high type chooses exactly

the first-best. Intuitively, the high type benefits from his cost advantage over the low type,

as indicated by the downward IC constraint, and thus, he extracts an information rent that

is increasing in the low type’s education level. This induces the school to under-supply

education to the low type. Since there are only two types, there is no distortion of the high

type’s education level. From preliminary calculations, one can completely characterize the

equilibrium outcome. In particular, the school’s equilibrium payoff equals

Πo = 0.5 (T oL + T oH) =
θHθ

3
L

8θH − 4θL
+
θ3
H

4
.
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We then consider the unobserved case. Suppose that the labor market believes naively

that the school’s contract is the same as that in the observed case and thus offers the same

wage schedule. Will the school retain the same contract? It depends. To see why, consider

an alternative contract {(z′, T ′)} such that z′ = zoH and T ′ = W o
H − C(zoH , θL) < T oH . That

is, the school only offers the high education level from the observed case and reduces tuition

to the level that also attracts the low type. Thus, the school’s new expected profit equals

Π′ = T ′ = θ3
H −

θ4
H

2θL
.

One can show that if θL and θH are close enough to one another, e.g., θL = 1 and θH = 1.1,

then this deviation is indeed profitable (Π′ ≈ 0.60 while Πo ≈ 0.56). The idea is that with

the wage schedule being fixed, the school secretly cuts its prices to gain market share; if the

labor market could observe the tuition, such price cuts would undermine the signaling value

of education and thus would not be profitable. If the gap between types is small enough, then

the increase in quantity dominates the reduction in price, making the deviation profitable.

In contrast, if the gap is relatively big, e.g., θL = 1 and θH = 2 (in this case, Π′ = 0 while

Πo = 13/6), and any off-equilibrium-path education is believed to be chosen by the low type,

then the equilibrium of the observed case can also be sustained in the unobserved case. This

is because the high education level is relatively high, and thus, the school finds it unprofitable

to induce the low type to imitate the high type by secretly cutting the price.

Then, what is the equilibrium of the unobserved case if the aforementioned deviation is

profitable? Here, we characterize the school-optimal separating equilibrium without proof.

First, the offer to the low type (zuL, T
u
L) is the same as (zoL, T

o
L). Second, the high education

level zuH satisfies the school’s incentive compatibility constraint as follows:

θLz
u
L −

zuL
2

2θL
− (θH − θL)zuL

2

2θLθH
= θHz

u
H −

zuH
2

2θL
− (θH − θL)zuH

2

2θLθH
s.t. zuH ≥ zuL. (SIC)

This constraint indicates that the school weakly prefers truthfully revealing the worker’s type

to inducing the low type to imitate the high type. Third, W u equals Q(z, θH) if z = zuH and

equals Q(z, θL) otherwise. Finally, T uH is derived by substituting zuH into S(z, θH) − U(θH),

where U(θH) = C(zuL, θL)− C(zuL, θH), as the downward IC constraint is binding.

This equilibrium outcome reveals our second heuristic result. In the unobserved case, the

high type selects more education than in the observed case (note that the low type’s situation

does not change). One can derive this result from the SIC constraint. For example, if θL = 1

and θH = 1.1, then zuH ≈ 1.43 while zoH = zfbH = 1.21. The underlying intuition is that in

the unobserved case, the high education level must be excessively high such that the school
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finds it unprofitable to induce the low type to imitate the high type. Since in both cases the

downward IC constraint is binding and the low type’s education level is the same, the high

type’s utility does not change between the two cases. This implies that the high education

level must be cheaper in the unobserved case, and thus, the school has a lower profit than

in the observed case. For example, if θL = 1 and θH = 1.1, then T uH ≈ 0.61 while T oH = 0.63.

The reason is that the high type selects the efficient quantity in the observed case but selects

more than the efficient quantity in the other, and thus, less social surplus is generated in the

unobserved case.6 To make the high type no worse off, the school must charge a lower price

for the high education level. Intuitively, since education is inflated (zuH > zoH), the signaling

value of the high education is diluted. This means that the worker has a lower willingness

to pay, and thus, the school achieves lower profits in the unobserved case.

3 Job Market Signaling without Tuition

We now return to the general model. As a reference point, we revisit Spence’s signaling game

in which tuition is fixed at zero. One could interpret such a benchmark as the case in which

schools are competitive and thus choose tuition equal to the marginal cost. In this case, an

equilibrium consists of an education function zs(θ) and a wage schedule W s(z), such that (i)

given W s(z), zs(θ) maximizes U(z, θ); (ii) W s(z) = E[Q(z, θ)|zs(θ)] with the market belief

updated using Bayes’ rule. We focus on the least-cost separating equilibrium, in which zs(θ)

is one-to-one and the lowest type θ chooses the first-best zfb(θ). In the following, we apply

the general results of Mailath (1987) to our specific setting to characterize the equilibrium.

Proposition 3.1. The least-cost separating equilibrium exists, such that

(i) zs(θ) = zfb(θ); zs(θ) satisfies the first-order condition

Qz(z
s(θ), θ) +Qθ(z

s(θ), θ) · θs′(zs(θ))− Cz(zs(θ), θ) = 0, (3.1)

where θs(z) is the inverse function of zs(θ), being differentiable on [θ, θ̄].

(ii) zs(θ) is increasing over [θ, θ̄], and thus, W s(zs(θ)) = Q(zs(θ), θ) for all θ ∈ [θ, θ̄].

Note that the first two terms on the left-hand side (LHS) of (3.1) are the total derivative

of W s(z). In particular, the second term is non-negative given the monotonicity of zs(θ).

6This implies that social welfare is lower in the unobserved case in the two-type model. In the general

model, however, the welfare comparison between the two cases is ambiguous, as we will show in Section 5.
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0
θ θ̄

z(θ)

the first-best, zfb(θ)

Spence, zs(θ)

Figure 1: The Signaling Effect. This figure compares zs(θ) with zfb(θ) over [θ, θ̄]. This figure assumes

that Q(z, θ) = θz + z, C(z, θ) = z2 + z − θz, and θ ∼ U [0, 1]. In this example, zfb(θ) = θ and zs(θ) = 3
2θ.

Since S(z, θ) is strictly quasiconcave, comparing (3.1) with (2.1) implies that zs(θ) ≥ zfb(θ)

for all θ ≥ θ, with equality holding at θ only. This comparison is illustrated in Figure 1. We

now summarize this result in the following corollary.

Corollary 3.1. In Spence’s signaling game, the worker chooses more education than the

first-best. Specifically, zs(θ) ≥ zfb(θ) on [θ, θ̄], with strict inequality for θ > θ.

Corollary 3.1 indicates that the worker’s signaling activity leads to over-education. The

intuition is well-understood. Under complete information, the marginal benefit of education

is its marginal contribution to human capital. In contrast, when ability is privately known,

in addition to the human capital effect, there is a signaling effect ; that is, a higher education

level makes the labor market regard the worker as having higher ability. Thus, the marginal

benefit of education is higher than under complete information. Since the marginal cost is

the same, education is over-invested in when the worker’s ability is private information.

4 Labor Market Observes Tuition

Starting with this section, we take the school’s strategic behavior into account. Here, we

consider the case in which the labor market observes the tuition scheme. From Section 2.1,

14



it suffices to solve the school’s problem in (2.3) for the equilibrium characterization. It is

heuristic to interpret the integrand in (2.3) as the school’s marginal profit in the observed

case. Define

MP o(z, θ) ≡ S(z, θ) +
1− F (θ)

f(θ)
Cθ(z, θ).

As is standard in the literature, we solve the school’s problem with the monotonicity

constraint relaxed. This is equivalent to pointwise optimization for MP o(z, θ). Inspired by

Martimort and Stole (2009), we say that the school’s marginal profit in the observed case

is regular if MP o(z, θ) is strictly quasiconcave in z and MP o
z (z, θ) is increasing in θ. Given

Assumption 2.1, regularity holds. Thus, MP o(z, θ) has a unique maximizer z∗(θ), which is

increasing. Note that z∗(θ) might be negative for some region of θ; as such, we set z(θ) to 0

instead of z∗(θ). Hence, MP o(z(θ), θ) is non-decreasing in θ and is non-negative. The cutoff

type θo0 is thus either the maximal root of MP o(z(θ), θ) = 0 if it exists, or θ otherwise. In

summary, the optimal allocation zo(θ) is given by

zo(θ) =

z∗(θ) if θ ≥ θo0

0 otherwise.
(4.1)

To complete the characterization, back out zo(θ)’s inverse function θo(z) on [θo0, θ̄] given its

monotonicity. Plugging θo(z) into Q(z, θ) yields the wage schedule W o(z) on [zo(θo0), zo(θ̄)].

Finally, the tuition scheme T o(z) on [zo(θo0), zo(θ̄)] is given by

T o(zo(θ)) = S(zo(θ), θ)− U(θ) = S(zo(θ), θ) +

∫ θ

θo0

Cθ(z
o(s), s)ds. (4.2)

For the off-path education levels, we assume without loss that the school sets exorbitantly

high prices such that no type is willing to deviate to there in any case. Then, given T o(z),

the school-optimal separating equilibrium is also the least-cost separating equilibrium in the

sense that the cutoff type chooses his full-information optimal quantity under the total cost

function T o(z) + C(z, θ). Moreover, since zo(θ) coincides with the unconstrained optimizer

z∗(θ) on path, this equilibrium is further the school-optimal equilibrium. We now summarize

the equilibrium outcome of the observed case in the proposition below.

Proposition 4.1. Given Assumption 2.1, the school-optimal separating equilibrium exists.

On the equilibrium path, the education function zo(θ) is given by (4.1); the tuition scheme

T o(z) is given by (4.2); and the wage schedule W o(z) equals Q(z, θo(z)).

Note that MP o
z (z, θ) is less than Sz(z, θ), holding weakly on the boundary. Consequently,

regularity implies that zo(θ) ≤ zfb(θ) on [θo0, θ̄], with equality holding at θ̄ only. Particularly,

if θo0 > θ, then zo(θ) = 0 for all θ ∈ [θ, θo0). To summarize, we have the following corollary:
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Corollary 4.1. In the observed case, the worker chooses less education than the first-best.

Specifically, zo(θ) ≤ zfb(θ) on [θ, θ̄], with strict inequality on (θ, θ̄).

Corollary 4.1 states that when the labor market observes the tuition scheme, education is

under-supplied. This result stands in stark contrast to that of Spence’s model. The altered

equilibrium prediction results from the school’s screening activity. Specifically, having a cost

advantage in education, a higher-ability worker can secure higher utility than a lower-ability

worker by choosing the same education as the latter. Therefore, to incentivize truth-telling,

the school has to leave information rents to the worker. This means that the marginal profit

of education is less than the social surplus generated; therefore, the school under-supplies

education. In particular, an interval of types at the low end of the domain will be excluded

from education if it is too costly to serve them.

Remark. Suppose that education is a pure signal (i.e., Q(z, θ) ≡ Q(θ)) as in Spence (1973);

we show in Appendix A.3 that the school-optimal separating equilibrium yields a virtually

socially optimal outcome, such that zo(θ) is arbitrarily close to zfb(θ) ≡ 0. Specifically, the

school allocates increasing and infinitesimal education to different types, with the lowest

type having no education. Thus, the school’s profit is arbitrarily close to the first-best social

welfare minus the lowest type’s utility Q(θ). To interpret, since education is unproductive,

the school provides little and different education in the form of different types of degrees to

separate types; a worker without any degree is regarded as having the lowest ability.

4.1 Screening vs Signaling

While the equilibrium prediction for the observed case is due to the mechanism of monopoly

screening, our model also contains signaling. Note that given the tuition scheme T o(z), the

subgame is indeed Spence’s signaling game as if the worker had a cost function in the form

of T o(z) + C(z, θ). From the same argument as in Corollary 3.1, the education levels in the

observed case are distorted, due to signaling, above the “efficient” level with respect to the

total cost of education. This fact reveals that the equilibrium outcome of the observed case

results from the interaction between screening and signaling.

Corollary 4.1 implies that when both screening and signaling are present and exert the

opposite effects—screening induces under-education, but signaling induces over-education—

screening outweighs signaling. This is because as a Stackelberg leader, the school internalizes

the worker’s signaling incentive when screening his type. To see this, note that

T o′(z) = W o′(z)− Cz(z, θo(z)) =
d

dz
[Q(z, θo(z))]− Cz(z, θo(z)).
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Substituting this equation into the first-order condition of MP o(z, θ), we have

T o′(z) = Qθ(z, θ
o(z)) · θo′(z) +

1− F (θo(z))

f(θo(z))
[−Czθ(z, θo(z))] . (4.3)

On the right-hand side (RHS) of (4.3), the first term captures the signaling effect, and the

second term is the marginal information rent extracted by the worker. Note that signaling

induces over-education, which reduces the school’s profit in two ways: on one hand, it lowers

total surplus; on the other hand, it provides the worker with more information rents. Thus,

the optimal tuition scheme must undo these two effects, as indicated by (4.3). In contrast, if

the school were a welfare-maximizing social planner, it would only undo the signaling effect

by levying Pigovian taxes (Spence 1974). Denote by T fb(z) the welfare-maximizing tax on

education. The marginal tax is equal to the signaling effect at the first-best, i.e.,

T fb
′
(z) = Qθ(z, θ

fb(z)) · θfb′(z), (4.4)

where θfb(z) is the inverse function of zfb(θ).7 Since the second term on the RHS of (4.3) is

positive, comparing (4.3) with (4.4) indicates that the profit-maximizing tax on education

“over-taxes” signaling activity and thus leads to under-education.

To see how signaling makes a difference, consider the situation in which the labor market

also observes the worker’s ability without changing any other element of the model. In this

case, the wage equals the actual productivity, and signaling is eliminated. This means that

the worker’s intrinsic value for education is the social surplus S(z, θ). Since Sθ = Qθ−Cθ > 0,

a higher type can be seen as a higher-value buyer of education. Thus, the school has the same

monopoly screening problem as in Mussa and Rosen (1978). Specifically, the school chooses

a contract 〈z(θ), T (z)〉 to maximize its expected profit subject to incentive compatibility and

individual rationality. Analogous to Lemma 2.1, an allocation 〈z(θ), U(θ)〉 is implementable

if and only if (i) z(θ) is non-decreasing; (ii) U(θ0) ≥ 0 and for θ > θ0,

U(θ) = U(θ0) +

∫ θ

θ0

Sθ(z(s), s)ds.

Thus, the school’s problem in such Mussa and Rosen’s screening game can be stated as

max
z(θ)

∫ θ̄

θ0

{
S(z(θ), θ)− 1− F (θ)

f(θ)
Sθ(z(θ), θ)

}
dF (θ)

subject to z(θ) being non-decreasing.

7Since the lowest type θ chooses the first-best zfb(θ) in equilibrium, he should be exempt from such tax;

that is, T fb(zfb(θ)) = 0. Then, directly integrating (4.4) yields the welfare-maximizing tax scheme T fb(z).
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z(θ)

0
θ θo0 θmr

0 θ̄

Spence, zs(θ)

the observed case, zo(θ)

the first-best, zfb(θ)

Mussa and Rosen, zmr(θ)

Figure 2: Screening vs Signaling. This figure compares zmr(θ) with zo(θ) over [θ, θ̄] based on Figure 1.

This figure assumes the same numerical example as Figure 1, such that zo(θ) = 3θ−1
2 and zmr(θ) = 2θ − 1.

Define analogously the school’s marginal profit as

MPmr(z, θ) ≡ S(z, θ)− 1− F (θ)

f(θ)
Sθ(z, θ).

Similarly, we say that MPmr(z, θ) is regular if it is strictly quasiconcave in z and MPmr
z (z, θ)

is increasing in θ.8 Denote by zmr(θ) and θmr0 the optimal allocation and the cutoff type in

Mussa and Rosen’s model, respectively. Suppose that MPmr(z, θ) is regular, then one can

characterize zmr(θ) and θmr0 analogously to the observed case.

We shall examine how the allocation in Mussa and Rosen’s model differs from that in

the observed case. On the extensive margin, because Sθ > −Cθ, MPmr(z, θ) ≤ MP o(z, θ),

with strict inequality for θ < θ̄. Hence, if θo0 > θ, then θmr0 > θo0; that is, more types are

excluded in Mussa and Rosen’s model. On the intensive margin, if Qzθ > 0 on [0, zfb(θ̄)],9

then zmr(θ) ≤ zo(θ), with strict inequality on [θo0, θ̄), meaning that under-education is more

serious in Mussa and Rosen’s model. These findings are illustrated in Figure 2.

For welfare comparison, note that education is already under-supplied in the observed

case, yet the downward distortion is larger in Mussa and Rosen’s model; thus, the observed

8Given Assumption 2.1, MPmr(z, θ) is regular if Qzθθ ≤ 0.
9This condition is not restrictive; indeed, given that Qθ(z, θ) > 0 and Q(0, θ) ≡ 0, we have Qzθ(z, θ) > 0

on [0, z̄] for some z̄ > 0. Given this condition, MPmrz (z, θ) < MP oz (z, θ) on [0, zfb(θ̄)] for θ < θ̄.
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case has higher social welfare. Moreover, since MPmr(zmr(θ), θ) ≤MP o(zo(θ), θ) with strict

inequality on [θo0, θ̄) and θmr0 ≥ θo0, it is readily confirmed that the school’s expected profit is

also higher in the observed case. In summary, we have the following proposition:

Proposition 4.2. If both MP o(z, θ) and MPmr(z, θ) are regular, and Qzθ > 0 on [0, zfb(θ̄)],

then under-education is greater when signaling is eliminated. Specifically, zmr(θ) ≤ zo(θ),

with strict inequality on [θo0, θ̄); if θo0 > θ, then θmr0 > θo0 > θ. Consequently, social welfare

and the school’s expected profit are strictly higher when signaling is present than otherwise.

Proposition 4.2 indicates that signaling can mitigate the downward distortion caused by

screening. Intuitively, when the labor market observes the worker’s ability, if a higher type

imitates a lower type by choosing the same education, he not only has a lower total cost

than the latter but also obtains a higher wage due to his higher productivity. In contrast,

when the labor market does not observe the worker’s ability, the higher type can no longer

directly reap the benefit from higher productivity, and thus, he acquires more education to

signal his ability. The signaling incentive reduces the worker’s willingness to imitate lower

types. Therefore, the school leaves lower information rents to the worker when signaling is

present, as we have the following inequality,

1− F (θ)

f(θ)
[−Cθ(z, θ)]︸ ︷︷ ︸

information rents with signaling

≤ 1− F (θ)

f(θ)
Sθ(z, θ)︸ ︷︷ ︸

information rents without signaling

which holds with equality at θ̄ only. Consequently, the screening distortion is mitigated.

4.2 Signaling Intensity, Market Structure and Welfare

Knowing that signaling can mitigate the downward distortion due to screening, one may

wonder how the mitigation corresponds to the intensity of signaling. Intuitively, the more

intense signaling is, the more downward distortion is mitigated. Unfortunately, with general

functional forms, such comparative statics is very complex; indeed, it is even hard to define

the intensity of signaling. For tractability, we consider the numerical example below.

Example. Assume that Q(z, θ) = γθz+z with γ > 0, C(z, θ) = z2 +z−θz, and θ ∼ U [0, 1].

Using previous results, we have zfb(θ) = (γ+1)θ
2

, zs(θ) = (2γ+1)θ
2

and zo(θ) = (γ+2)θ−1
2

. Define

the intensity of signaling to be the ratio of the over-invested education in Spence’s model,

i.e., zs(θ)− zfb(θ), to the first best education level zfb(θ) for θ > 0. Substituting, we have

zs(θ)− zfb(θ)
zfb(θ)

=
γ

γ + 1
.
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Clearly, the intensity of signaling is increasing in the parameter γ. To see the idea, note that

the larger γ, the stronger complementarity between the worker’s ability and education. In

Spence’s model, higher education induces the labor market to regard the worker as having

higher ability; thus, if ability complements education to a larger extent, the marginal benefit

of education will be higher, thereby enhancing signaling through education.

Then, we examine how the signaling intensity affects signaling mitigating the screening

distortion. Similarly, we define the extent of the downward distortion in the observed case

as the ratio of the under-supplied education, i.e., zfb(θ) − zo(θ), to the first best education

level zfb(θ) for θ > 0. Substituting, we have

zfb(θ)− zo(θ)
zfb(θ)

=
1− θ

(γ + 1)θ
.

For any fixed θ ∈ (0, 1), the extent of the downward distortion is decreasing in γ. This means

that the more intense signaling is, the more screening distortion is mitigated.

Recall that in Spence’s signaling game, signaling reduces social welfare, as it leads to

over-education. In the observed case, by contrast, signaling raises social welfare because it

mitigates the screening distortion. From the above analysis, one can infer that if signaling is

sufficiently intense, then the welfare loss in Spence’s model will exceed that in the observed

case; thus, the observed case will yield higher social welfare. To be concrete, we formulate

the difference in social welfare between Spence’s model and the observed case:∫ θ̄

θ

[S(zo(θ), θ)− S(zs(θ), θ)] dF (θ) =
(γ2 + γ − 1)(γ2 + 3γ + 1)

12(γ + 2)2
.

It is clear that the observed case yields higher social welfare if and only if γ >
√

5−1
2

.

This finding has welfare implications for the market structure of signals (which refer to

education here). Note that when the market is served by perfectly competitive sellers of

signals, the equilibrium outcome is predicted by Spence’s model; when the market is served

by a monopoly with a publicly observed price schedule, the equilibrium outcome is predicted

by the observed case. Therefore, when the buyer’s signaling incentive is sufficiently strong, a

monopoly can yield higher social welfare than a perfectly competitive market. This implies

that introducing competition among signal sellers is not necessarily socially beneficial.

Furthermore, since signaling exerts the opposite welfare effects between Spence’s model

and the observed case, an instrument that affects the intensity of signaling will also exert the

opposite welfare effects between the two cases. Specifically, any instrument that attenuates

signaling is socially beneficial in the Spencian world but harmful in the observed case. For

example, students’ grades substitute for their education levels in signaling; thus, grading is
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beneficial in the Spencian world but harmful in the observed case. If grades become less

informative, e.g., due to grade inflation, then signaling through education will be enhanced,

as students will attempt to separate themselves from others (Daley and Green 2014). This

reveals that grade inflation is socially beneficial in the observed case by alleviating under-

education, while it is harmful in the Spencian world because it aggravates over-education.

5 Labor Market Does Not Observe Tuition

In this section, we turn to the case in which the labor market does not observe the tuition

scheme. Given some wage schedule W (z), the school solves the problem in (2.2). Similar to

the observed case, we define the school’s marginal profit in the unobserved case as

MP u(z, θ) ≡ W (z)− C(z, θ) +
1− F (θ)

f(θ)
Cθ(z, θ).

It is heuristic to call the last two terms the school’s virtual cost, and we define

G(z, θ) ≡ C(z, θ)− 1− F (θ)

f(θ)
Cθ(z, θ).

In doing so, we establish an auxiliary game analogous to Spence’s signaling game, in which

the worker’s cost function is given by G(z, θ) and utility function by MP u(z, θ).

This analogy simplifies the equilibrium characterization of the unobserved case. If there

exists an equilibrium with non-decreasing education levels for the auxiliary game, then one

can construct an equilibrium for the unobserved case based on that. Specifically, assign the

auxiliary game’s equilibrium outcome to {zu(θ),W u(z)}. We conclude that zu(θ) solves the

school’s problem given W u(z), as it maximizes MP u(z, θ) pointwise and is non-decreasing.

Moreover, W u(z) is derived from the correct market belief over zu(θ). Thus, zu(θ) and W u(z)

satisfy the equilibrium conditions of the unobserved case. As zu(θ) has also determined the

cutoff type θu0 , the tuition scheme T u(z) can be derived analogously to the observed case.10

This closes the equilibrium characterization of the unobserved case.

In the following, we instead study the auxiliary game and focus on the school-optimal

separating equilibrium. Given Assumption 2.1, we have Gzθ(z, θ) < 0 if z > 0, and thus, the

single-crossing property holds. This condition means that it is less costly for the school to

serve a higher-ability worker. The next proposition shows that the school-optimal separating

equilibrium exists in the unobserved case.

10Unlike the observed case, it entails some loss of generality to assume that tuition is exorbitantly high for

the off-path education, as the school cannot influence the market’s belief over the tuition scheme. However, it

is natural to smoothly extend Tu(z) to R+; we show in the Appendix that dosing so is incentive compatible.
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Proposition 5.1. Given Assumption 2.1, the school-optimal separating equilibrium exists,

such that

(i) (θu0 , z
u(θu0 )) = (θo0, z

o(θo0)); zu(θ) satisfies the first-order condition

Qz(z
u(θ), θ) +Qθ(z

u(θ), θ) · θu′(zu(θ))−Gz(z
u(θ), θ) = 0, (5.1)

where θu(z) is the inverse function of zu(θ), being differentiable on [θu0 , θ̄].

(ii) zu(θ) is increasing over [θu0 , θ̄], and thus, W u(zu(θ)) = Q(zu(θ), θ) for all θ ∈ [θu0 , θ̄].

Proposition 5.1 characterizes the equilibrium education function zu(θ). It indicates that

the cutoff type and his education level coincide for both the observed and unobserved case.

In Appendix A.1, we show that if there is no exclusion in the observed case (i.e., θo0 = θ),

then the unobserved case has a unique separating equilibrium outcome, which is given above;

otherwise (i.e., θo0 > θ) there exists a continuum of separating equilibrium outcomes, and in

each of them, we have θu0 ≥ θo0 and zu(θu0 ) ≥ zo(θo0). In addition, it is shown in Appendix A.2

that the school-optimal separating equilibrium is also the least-cost separating equilibrium

in the sense that the cutoff type chooses his full-information optimal education level under

the total cost function T u(z) + C(z, θ).

The next theorem presents the paper’s main result. In contrast with the observed case,

the worker chooses more education in the unobserved case. In particular, a worker who has

a higher ability than the cutoff type chooses strictly more education in the unobserved case.

Theorem 5.1. In contrast with the observed case, the worker chooses more education in the

unobserved case. Specifically, zu(θ) ≥ zo(θ) on [θ, θ̄], with strict inequality for θ > θu0 .

Proof. Given Assumption 2.1, MP o(z, θ) is strictly quasiconcave in z. Because zo(θ) is the

unique maximizer of MP o(z, θ), it suffices to prove that MP o
z (zu(θ), θ) ≤ 0, with strict

inequality for θ > θu0 . This is given by the following:

MP o
z (zu(θ), θ) = Sz(z

u(θ), θ) +
1− F (θ)

f(θ)
Czθ(z

u(θ), θ)

= Qz(z
u(θ), θ)−Gz(z

u(θ), θ)

≤ Qz(z
u(θ), θ) +Qθ(z

u(θ), θ) · θu′(zu(θ))−Gz(z
u(θ), θ)

= 0.

The second equality is given by the definition of G(z, θ); the inequality results from the

monotonicity of zu(θ) on [θu0 , θ̄]; the last equality is due to (5.1). Furthermore, for θ > θu0 ,

the second term in (5.1) is positive, and thus, the above inequality becomes strict.
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As we informally argued in Section 2 that the school has a lower equilibrium payoff in

the unobserved case, this argument is formally proven by the corollary below.

Corollary 5.1. In the unobserved case, the school’s expected profit Π u is strictly lower than

its expected profit Π o in the observed case.

Proof. From Proposition 5.1, we have MP u(zu(θ), θ) = MP o(zu(θ), θ). Since zo(θ) is the

unique maximizer of MP o(z, θ) and zu(θ) > zo(θ) for θ > θu0 = θo0, we have

Πo − Πu =

∫ θ̄

θo0

[MP o(zo(θ), θ)−MP o(zu(θ), θ)]dF (θ) > 0.

Thus, the school is worse off in the unobserved case.

The difference between the observed and unobserved case is driven by a signal jamming

effect. The worker’s signal is “jammed” in the unobserved case since the labor market does

not observe the actual cost of education. Specifically, the labor market cannot distinguish the

impact of a change in tuition from that of cost heterogeneity on the change in education. To

illustrate, suppose that the school lowers tuition so that the worker chooses more education

than in the initial state. When the labor market observes the tuition change, it cuts wages,

as any education level now corresponds to a lower-ability worker. In contrast, when the labor

market does not observe the tuition change, it does not adjust wages despite that tuition

changes; thus, the worker is willing to pay more for additional education. Conversely, if the

school raises tuition such that education decreases, then the labor market will raise wages

in the observed case; thus, the worker’s willingness to pay is lower in the unobserved case.

This reveals that the worker is more sensitive to tuition changes in the unobserved case.

From the school’s perspective, the demand is more elastic in the unobserved case. Note

that the LHS of (5.1) represents the marginal profit of education in the unobserved case;

the second term represents the signal jamming effect and is positive. In comparison, in the

observed case, rearranging the first-order condition of MP o(z, θ), we have

MP o
z (zo(θ), θ) = Qz(z

o(θ), θ)−Gz(z
o(θ), θ).

Thus, the school’s marginal profit is higher in the unobserved case than in the observed case.

This provides the school with an incentive to “fool” the labor market with secret price cuts;

that is, the school secretly supplies more education and persuades the labor market that

the worker is more productive than is actually the case. In equilibrium, the labor market

correctly anticipates the school’s incentive and offers lower wages, as education is inflated.

This reduces the worker’s willingness to pay, and thus, the school achieves lower profits.
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5.1 Implications for Tuition Transparency

We have shown that tuition cuts lead to smaller increases in demand in the observed case

than in the unobserved case. This is because when the tuition cuts are publicly observed,

the increase in demand is mitigated by the cheaper tuition reducing the signaling value of

education. Hence, tuition cuts are less profitable in the observed case. Here, we show further

that tuition is always more expensive in the observed case. Specifically, the tuition scheme

in the unobserved case is uniformly lower than that in the observed case over the common

domain of education. This is illustrated in Panel (a) of Figure 3.

Proposition 5.2. T u(z) ≤ T o(z) on [zo(θo0), zo(θ̄)], with strict inequality for z > zo(θo0).

Proof. From the worker’s first-order condition in both cases, we have

d

dz
[W o(z)− T o(z)] = Cz(z, θ

o(z)) and
d

dz
[W u(z)− T u(z)] = Cz(z, θ

u(z)).

According to Theorem 5.1, zo(θ) ≤ zu(θ) on [θo0, θ̄]. As both zo(θ) and zu(θ) are increasing,

θo(z) ≥ θu(z) on [zo(θo0), zo(θ̄)]. Hence, Cz(z, θ
o(z)) ≤ Cz(z, θ

u(z)) on [zo(θo0), zo(θ̄)]. This

implies that W o(z) − T o(z) ≤ W u(z) − T u(z) on [zo(θo0), zo(θ̄)]. Since W o(z) = Q(z, θo(z))

and W u(z) = Q(z, θu(z)) on [zo(θo0), zo(θ̄)], W o(z) ≥ W u(z) on [zo(θo0), zo(θ̄)]. Hence, it is

readily confirmed that T o(z) ≥ T u(z) on [zo(θo0), zo(θ̄)].

Furthermore, from the worker’s first-order condition in the unobserved case, we have

T u′(z) = W u′(z)− Cz(z, θu(z)).

Substituting this equation into (5.1), and noticing that W u(z) = Q(z, θu(z)), we obtain

T u′(z) =
1− F (θu(z))

f(θu(z))
[−Czθ(z, θu(z))] . (5.2)

Equation (5.2) states that in the unobserved case, the marginal tuition equals the marginal

information rent extracted by the worker. In contrast to the observed case, as indicated by

the comparison between (5.2) and (4.3), the optimal tuition scheme in the unobserved case

does not undo the signaling effect. The reason is that the loss in the social surplus caused by

over-education will be compensated by the labor market overpaying the worker, as the labor

market will overestimate the worker’s ability if the school secretly cuts tuition. In addition,

(5.2) states that the marginal tuition vanishes at the highest education level. This implies

that the school offers quantity discounts (i.e., T (z)/z is declining) for higher education levels

in the unobserved case. This echoes the classic screening model of Maskin and Riley (1984),

in which quantity discounts are also optimal at the right tail of the distribution.
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(a) Tuition Schemes

T (z)

0

zo(θ̄) zu(θ̄)0

the unobserved case, Tu(z)

the observed case, To(z)

(b) Worker’s Utility Levels

0

U (θ)

the unobserved case, Uu(θ)

the observed case, Uo(θ)

θ θ̄θo0/θ
u
0

Figure 3: Implications for Tuition Transparency. This figure compares tuition rates and the worker’s

utility level between the observed and unobserved case. This figure considers the same numerical example

as Figure 1, such that (a) T o(z) = z
3 and Tu(z) = − z

2

4 + z
3 ; (b) Uo(θ) = 3

4 (θ − 1
3 )2 and Uu(θ) = (θ − 1

3 )2.

In terms of the worker’s payoff, note that in both cases, the market belief about tuition

is correct in equilibrium; thus, given the equilibrium tuition scheme, the continuation game

is indeed Spence’s signaling game as if the worker’s cost function was given by the total cost.

Because the tuition scheme is uniformly lower in the unobserved case, the signaling costs are

lower in this case. Consequently, the worker has a higher utility level in the unobserved case

than in the observed case. This is illustrated in Panel (b) of Figure 3. Formally, we have

Proposition 5.3. Uu(θ) ≥ U o(θ) on [θ, θ̄], with strict inequality for θ > θo0.

Proof. For θ ∈ (θo0, θ̄], by Lemma 2.1 and Theorem 5.1, we have

Uu(θ)− U o(θ) =

∫ θ

θo0

[Cθ(z
o(s), s)− Cθ(zu(s), s)]ds > 0.

The inequality is due to Czθ < 0 and zo(θ) < zu(θ). For θ ∈ [θ, θo0], Uu(θ) = U o(θ) = 0.

Propositions 5.2 and 5.3 imply that policies that improve the transparency of net prices

at colleges and universities through mandatory disclosure may unintentionally induce more

expensive education and harm students. These policies, such as U.S. Code § 1015a, require

schools to publicly disclose their net prices, which are often not previously observed by

employers. Such an intervention allows schools to commit to high prices and not dilute the

signaling value of a high-cost education by means of fee waivers, financial aid, and so forth.

Hence, the net prices that students actually pay may be higher under such policies.
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5.2 Welfare and Education Comparison

We now conduct a welfare analysis for the unobserved case. As a reference point, note that

zo(θo0) < zfb(θo0) and zo(θ̄) = zfb(θ̄). Because zu(θ) ≥ zo(θ), holding strictly for θ > θo0,

continuity implies that zu(θ) intersects zfb(θ) from below at least once. Moreover, under

some mild conditions—the following Assumption 5.1, for example—we show that zu(θ) is

single-crossing zfb(θ), i.e., there is a unique cutoff type such that all lower types obtain less

education than the first-best while the others obtain more than the first-best (see Figure 4).

Assumption 5.1. The function

Qθ(z
fb(θ), θ) · θfb′(z) +

1− F (θ)

f(θ)
Czθ(z

fb(θ), θ) (∗)

is single-crossing in θ.11

Proposition 5.4. Given Assumption 5.1, there exists a unique type θw ∈ (θ∗, θ̄) such that

zu(θ) < zfb(θ) on [θ, θw) and zu(θ) > zfb(θ) on (θw, θ̄], where θ∗ > θu0 is the root of (∗).

In the unobserved case, there are two competing forces that pull the education function

away from the first-best benchmark. On the one hand, the signal jamming effect provides

the school with an incentive to supply more education. On the other hand, more education

means more information rents to the worker. Since the cost of information rents ultimately

vanishes as type approaches the top, the school unambiguously over-supplies education on

some upper interval of the spectrum. Assumption 5.1 ensures that the relative significance

of the two forces alters only once, thus it rules out the possibility of multiple intersections

between zu(θ) and zfb(θ). Proposition 5.4 reveals that under-education is slighter on a lower

interval of the spectrum in the unobserved case than in the observed case; it also provides a

lower bound for the length of this interval.

However, since over-education also occurs in the unobserved case, whether the observed

or unobserved case yields higher social welfare remains ambiguous. Heuristically, if there is

slight under-education in the observed case, then over-education will be a relatively more

serious issue in the unobserved case; thus, the observed case will yield higher social welfare.

Recall that in the observed case, the more intense signaling is, the slighter under-education

there is. Thus, the more intense signaling is, the greater over-education in the unobserved

case, as the school will find it more profitable to fool the labor market by secretly suppling

more education. To illustrate, we revisit the example in Section 4.

11A function g(x) is single-crossing in x if given some x∗, g(x) < 0 for x < x∗ and g(x) > 0 for x > x∗.
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z(θ)

Mussa and Rosen, zmr(θ)

the first-best, zfb(θ)

the observed case, zo(θ)

the unobserved case, zu(θ)

Spence, zs(θ)

θ̄θmr
0θo0/θ

u
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Figure 4: All Education Functions. This figure illustrates all the equilibrium education functions that

we have discussed in this paper. This figure considers the same numerical example as Figure 1, such that

zu(θ) = 2θ − 2
3 , and recall that zfb(θ) = θ, zs(θ) = 3

2θ, z
o(θ) = 3θ−1

2 and zmr(θ) = 2θ − 1.

Example. Assume that Q(z, θ) = γθz+z with γ > 0, C(z, θ) = z2 +z−θz, and θ ∼ U [0, 1].

Applying Proposition 5.1, we have zu(θ) = (γ + 1)θ − γ+1
γ+2

. Recall that zfb(θ) = (γ+1)θ
2

and

zo(θ) = (γ+2)θ−1
2

. It is readily confirmed that the welfare cutoff type θw = 2
γ+2

, which is

decreasing in γ. This implies that the over-education region is increasing in the intensity of

signaling. Moreover, the difference in social welfare between the two cases is given by∫ θ̄

θo0

[S(zo(θ), θ)− S(zu(θ), θ)] dF (θ) =
γ(γ − 1)(γ + 1)3

12(γ + 2)3
.

Clearly, the RHS is positive if and only if γ > 1; that is, if signaling is sufficiently intense,

then the observed case yields higher social welfare than the unobserved case.

Our last proposition indicates that the education function in the unobserved case zu(θ)

is bounded above by that of Spence’s signaling game zs(θ). This is illustrated in Figure 4.

Proposition 5.5. In the unobserved case, the worker chooses strictly less education than in

Spence’s signaling game, that is, zu(θ) < zs(θ) on [θ, θ̄].

The intuition is straightforward, as the unobserved case is essentially Spence’s signaling

game with higher costs, meaning that it yields lower education levels. Proposition 5.5 implies
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that if signaling is sufficiently intense so that over-education is prevalent in the unobserved

case, then social welfare is higher in the unobserved case than in Spence’s model, as the

former case yields slighter over-education than the latter.12

In this paper, we performed a pairwise comparison of different education functions. We

first showed that signaling alone leads to over-education, i.e., zs(θ) > zfb(θ). Then, after

accounting for the school’s strategic behavior, the equilibrium education functions vary with

the labor market’s information. The table below summarizes the correspondence between

the equilibrium education function and information structure.

Table 1: Education Functions under Different Information Structures.

Labor Market Observes Tuition

No Yes

Labor
No zu(θ) zo(θ)

Market

Observes
Yes zmr(θ)

Type

As illustrated by Table 1, when the labor market observes the worker’s ability and the

school’s tuition scheme, the model is Mussa and Rosen’s screening game. A higher-ability

worker benefits from his productivity and cost advantage over others. To incentivize truth-

telling, the school leaves information rents to the worker and thus under-supplies education,

that is, zmr(θ) < zfb(θ). When the labor market observes only the tuition scheme, a higher-

ability worker cannot benefit directly from his productivity advantage, and thus, signaling

arises. Signaling mitigates the screening distortion since the school incurs lower information

rents that stem from worker cost heterogeneity only. Thus, zmr(θ) < zo(θ) < zfb(θ). Finally,

when the labor market observes neither the tuition scheme nor the worker’s ability, the

worker becomes more sensitive to tuition changes, and thus, the demand for education is

more elastic than in the observed case. This makes price cuts relatively more profitable for

the school and induces it to supply more education; therefore, zo(θ) < zu(θ).

12In the previous numerical example, if and only if γ is larger than some cutoff that is less than
√
5−1
2 ,

the unobserved case yields higher social welfare than Spence’s model. Thus, we have derived all the three

cutoffs for a pairwise welfare comparison between Spence’s model, the observed and unobserved case. These

cutoffs partition the domain of γ into four divisions in which the three cases rank differently in terms of

social welfare. It is clear that as the intensity of signaling raises (i.e., γ increases), the case that yields the

highest social welfare will be, respectively, Spence’s model, the unobserved case and the observed case.
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Remark. If education is a pure signal, all the results in this section are valid. Specifically, in

the school-optimal separating equilibrium, the lowest type has no education and the others

obtain increasing and positive amounts of education. Recall that in the observed case, the

lowest type has zero education and the other types obtain infinitesimal education. Thus, our

main result still holds. Moreover, in the unobserved case the school gains lower profits while

the worker has a higher utility level than in the observed case. Finally, because education is

unproductive and the unobserved case yields higher education levels, social welfare is higher

in the observed case. See Appendix A.3 for further details.

6 Summary and Discussion

In this paper, we developed classic signaling models by allowing a third party to affect the

signaling cost. We used this framework to analyze how a school with market power, e.g.,

a top business school, manages job market signaling by designing a tuition scheme. The

equilibrium depends critically on whether employers observe the tuition scheme. In the

observed case, the school internalizes the worker’s signaling incentive when screening his

type, causing under-education. In the unobserved case, the worker’s signal is jammed and

he is more sensitive to tuition changes. This leads to a more elastic demand for education and

induces the school to lower tuition rates. In equilibrium, the worker chooses more education

and obtains higher utility than in the observed case, whereas the school achieves lower profits

than in the observed case.

Our framework has policy implications for the transparency of tuition at colleges and

universities. Mandatory disclosure policies, such as U.S. Code § 1015a, make the net prices

of education public information. On the one hand, this reduces the search costs of students,

thereby stimulating the competition between schools and lowering prices; on the other hand,

this also allows schools to commit to high prices and not dilute the signaling value of a

high-cost education by means of fee waivers, financial aid and so forth. It is thus possible

that such policies ultimately raise education costs and harm students. Hence, policymakers

should not overlook the potential drawbacks of these mandatory disclosure policies.

Our framework has welfare implications for the market structure of signals. When the

market is served by perfectly competitive sellers, the equilibrium outcome is predicted by

Spence’s model; when the market is served by a monopoly with a publicly observed price

schedule, the equilibrium outcome is predicted by the observed case. We show that when the

buyer’s signaling incentive is sufficiently strong, a monopoly can yield higher social welfare
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than a perfectly competitive market. This implies that introducing competition among the

sellers of signals is not necessarily socially beneficial.

Our framework also draws attention to the positive side of grade inflation at colleges and

universities. Grade inflation, which is documented by a large body of empirical work (e.g.,

Johnson 2006, Rojstaczer and Healy 2010), induces students to obtain more education to

signal their intrinsic and unobserved abilities. Our model suggests that when schools have

market power and under-supply education due to screening, grade inflation can mitigate the

screening distortion by encouraging education, thereby raising social welfare.

6.1 Applications of the Model

In addition to job market signaling, our model can be applied to other vertical relationships

in which signaling prevails, such as conspicuous consumption and advertising. In the case of

conspicuous consumption, a retailer (principal) chooses a price schedule T (z) for a luxury

good, where z denotes the quality of the good. Then, as in Bagwell and Bernheim (1996), a

consumer (agent) chooses the quality of the good he will purchase to signal his unobserved

wealth (type) θ to the social contact (market); the social contact observes z and forms some

belief about θ. In the spirit of the seminal work of Veblen (1899), the social contact rewards

the consumer based on z. The reward scheme W (z) is given by the social contact’s expected

benefit E[Q(z, θ)] from the consumer; the function Q(z, θ) is increasing in both arguments,

as the social contact obtains higher utility by making friends with richer people and sharing

goods of higher quality with them. Moreover, the consumer derives intrinsic utility from the

luxury good. The intrinsic utility is denoted by V (z, θ), which is increasing in the quality z.

More important, the single-crossing condition holds: Vzθ(z, θ) > 0. This condition captures

the feature that a wealthier individual has higher marginal utility from consuming a luxury

good. For example, a buyer of a yacht can voyage more often if he is richer, as he is better

able to afford the fuel costs and maintenance fees. In terms of payoffs, the retailer’s profit

equals the revenue T (z) minus the cost C(z); the consumer’s net utility equals the reward

W (z) plus the intrinsic utility V (z, θ) and minus the price T (z). Then, given such a similar

setup, one can easily replicate the analysis we have conducted in the education application.

We now turn to the application of advertising. In this case, a media company (principal)

chooses a price schedule T (z) for advertising messages, where z denotes advertising level.

Then, as in Milgrom and Roberts (1986), a producer (agent) that has just developed a new

product chooses its advertising level to signal the unobserved quality (type) θ of the product

to consumers (market); consumers observe z and form some belief about θ. The producer’s
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revenue has two sources: the purchase in the introductory stage and the repeat purchase in

the post-introductory stage. The introductory revenue Ri(z, θ̂) depends on the advertising

level z and the expected quality θ̂, and is increasing in both arguments, as more advertising

results in higher consumer awareness, and better consumer perception allows the producer

to charge a higher price. In contrast, the post-introductory revenue Rp(z, θ) depends on the

actual quality θ instead of θ̂, since the product’s quality is revealed after the introductory

stage. Rp(z, θ) is increasing in z, as more introductory advertising results in a larger base of

repeat purchase. More important, the single-crossing condition holds: Rp
zθ(z, θ) > 0. This is

due to the complementarity between advertising and quality; that is, the marginal revenue

of the introductory advertising is higher if the product is of higher quality, thereby allowing

the producer to charge higher prices in the post-introductory stage. In terms of payoffs, the

media company’s profit equals the revenue T (z) minus the cost C(z); the producer’s profit

equals the sum of the introductory revenue Ri(z, θ̂) and post-introductory revenue Rp(z, θ)

minus the price T (z), with production costs normalized to zero. In particular, if Ri(z, θ̂)

is linear in θ̂, then Ri(z, θ̂) = E[Ri(z, θ)], and thus, the setup is similar to the education

application and the analysis will be analogous.

A remark on the advertising model is as follows: the introductory price that is chosen

by the producer may also be used as a signal of quality, as in Milgrom and Roberts (1986).

In this regard, the producer faces a trade-off between signaling by price and signaling by

advertising, depending on which channel is more effective; it is possible that both types of

signal coexist in equilibrium. In turn, the possibility of multiple signals will also affect the

media company’s pricing strategy, making the analysis more complicated.

6.2 Extensions of the Model

To isolate the impacts of pricing transparency on the degree of signaling and welfare, we

assumed in this paper that the principal is a monopolist and the agent has a zero-utility

outside option. In the project we are working on, we further investigate how (horizontal)

competition affects the principal’s pricing strategy and the degree of signaling for both the

observed and unobserved case. In contrast with the current model, the agent’s preference is

two-dimensional: the vertical preference parameter is in conformity with the current model;

the horizontal preference parameter captures the agent’s outside option; these parameters

are independent and both privately known. In this case, the agent has a positive and type-

dependent outside option; thus, the principal has an incentive to charge lower prices than in

the current model to gain the market share of each vertical type.
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We show that the extent of the price decrease is relatively greater in the observed case

than in the unobserved case. Specifically, the price schedule in the observed case is lower

than that in the unobserved case at the left tail of the common domain; thus, an interval

of vertical types at the low end of the spectrum choose higher quantities and obtain higher

utilities in the observed case. The reason is that in the unobserved case the signal jamming

effect induces the principal to cut prices, as in the current paper; if the principal charges as

low of prices as in the observed case for those lower quantities, then it must further lower

the prices for higher quantities to remain incentive compatibility, which is unprofitable. We

show that the length of such an interval is increasing in the agent’s outside option, in terms

of an exogenous parameter. In particular, when the parameter reaches zero, we restore all

the results of the current model. This means that there is no discontinuity in the current

paper’s results when we disturb the participation constraint somewhat. We also analyze an

oligopoly case in which multiple principles are competing in selling signals. We show that

when all vertical types are served in equilibrium, each principal offers a cost-plus-fixed-fee

tariff, thereby eliminating screening whereas preserving signaling. The equilibrium result is

thus analogous to that of Spence’s model.

The current paper’s results still hold if we change non-linear tuition to linear tuition or

change continuous types to discrete types. A somewhat special case is linear tuition with

discrete types. Without loss of generality, suppose that there are only two types, low and

high, and the school chooses a uniform tuition rate. In the observed case, the least-cost

separating equilibrium exists, in which the high type obtains more education than the low

type, and the latter is indifferent between revealing own type and imitating the former. In

the unobserved case, however, such an equilibrium does not exist because the high education

level is so high that the low type strictly prefers to reveal his type. The intuition is similar:

the high education level must be relatively too high for the low type to imitate the high

type, such that the school finds it unprofitable to cut the price and gain market share.

A new economic force arises in this case due to the school’s inability to price discriminate.

That is, when the high type strictly prefers to separate himself from the low type, the school

has an incentive to squeeze him by raising tuition. The reason is that the high type is less

sensitive to tuition changes, as a decrease in education will cause him to be regarded as the

low type even if this decrease is due to higher tuition. Therefore, the school faces a trade-off

between squeezing the high type and maintaining the low type’s market share. If the gap

between the two types and the proportion of the high type are large enough, squeezing the

high type is relatively more profitable, such that in equilibrium the low type is excluded from
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education and the high type is indifferent between choosing the equilibrium high education

level and deviating downward optimally.

A Appendix

A.1 Omitted Proofs

Proof of Proposition 3.1.

Proof. Let U(θ, θ̂, z) be type-θ’s payoff if he chooses education level z and is believed as

type-θ̂. In particular, U(θ, θ, z) equals S(z, θ), which is strictly quasiconcave in z and has a

unique maximizer. Moreover, U2(θ, θ̂, z) = Qθ(z, θ̂) > 0, U13(θ, θ̂, z) = −Czθ(z, θ) > 0, and

U3(θ, θ̂, z)/U2(θ, θ̂, z) is increasing in θ. Appealing to Mailath (1987, Theorem 3), we prove

that a function z(θ) is incentive compatible if it satisfies (i) and (ii) of Proposition 3.1 and

such a function uniquely exists given the initial condition. We assume that the market holds

the worst belief off the equilibrium path, so that no type is willing to deviate to there. Thus,

the least-cost separating equilibrium exists and is characterized by Proposition 3.1.

Proof of Proposition 5.1.

Proof. We first prove that a separating equilibrium exists in the unobserved case. Fix some

admissible initial point (θu0 , z
u(θu0 )). Given Assumption 2.1, MP o(z, θ) is regular. Replacing

C(z, θ), U(z, θ) and S(z, θ) by G(z, θ), MP u(z, θ) and MP o(z, θ), respectively, we obtain

immediately the existence by replicating the proof of Proposition 3.1.

To find the school-optimal separating equilibrium, it suffices to pin down the initial point.

We consider two cases. First, θo0 = θ. Note that the lowest possible wage for any education

level z > 0 is Q(z, θ). Thus, for every pair (z, θ) with z > 0, we have

MP u(z, θ) ≥ Q(z, θ)−G(z, θ) ≥ Q(z, θ)−G(z, θ) = MP o(z, θ).

The second inequality is due to Gzθ < 0 if z > 0. Since θo0 = θ, MP u(zo(θ), θ) ≥ 0; that is,

the marginal profit of the lowest type can be at least non-negative. Thus, θu0 = θ. Note too

that MP u(zu(θ), θ) = MP o(zu(θ), θ), as types reveal in equilibrium. Then, it is optimal for

the school to choose zu(θ) = zo(θ), because the labor market cannot punish this choice by

holding a worse belief than θ and zo(θ) maximizes MP o(z, θ) by definition. Thus, if θo0 = θ,

then the separating equilibrium outcome is unique such that (θu0 , z
u(θu0 )) = (θ, zo(θ)).
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Second, θo0 > θ. In this case, (θu0 , z
u(θu0 )) and thus the equilibrium outcome is not unique.

From Mailath (1987, Theorem 3), for every separating equilibrium, zu(θ) satisfies (5.1) and

is increasing. Analogously to the proof of Theorem 5.1, we have zu(θ) ≥ zo(θ) on [θu0 , θ̄] with

strict inequality for θ > θu0 . This implies that MP u(zu(θ), θ) ≤ MP o(zo(θ), θ), as zo(θ) is

the unique maximizer of MP o(z, θ), and MP u(zu(θ), θ) = MP o(zu(θ), θ). By the definition

of the cutoff type, we have θu0 ≥ θo0 in every separating equilibrium of the unobserved case.

Thus, we have determined the lower bound of (θu0 , z
u(θu0 )). In Appendix A.2, we show that the

school-optimal separating equilibrium exists in this case such that (θu0 , z
u(θu0 )) = (θo0, z

o(θo0)).

In summary, in both cases, (θu0 , z
u(θu0 )) = (θo0, z

o(θo0)); thus, Proposition 5.1 is proven.

Proof of Proposition 5.4.

Proof. We only need to study the interval (θu0 , θ̄). We have shown that zu(θ) intersects zfb(θ)

from below at least once. Note that zu(θu0 ) = zo(θu0 ) < zfb(θu0 ) and zu(θ̄) > zo(θ̄) = zfb(θ̄).

If there are multiple intersections, then zu(θ) intersects zfb(θ) at least three times. Denote

by W fb(z) the wage schedule in the first-best benchmark. Since both W u(z) and W fb(z) are

increasing, it suffices to prove that W u(z) intersects W fb(z) only once. Suppose that zu(θ)

intersects zfb(θ) at some θw, then W u(z) intersects W fb(z) at zfb(θw). Differentiating both

W u(z) and W fb(z) at zfb(θw), respectively, we have

W u′(zfb(θw)) = Cz(z
fb(θw), θw)− 1− F (θw)

f(θw)
Czθ(z

fb(θw), θw),

W fb′(zfb(θw)) = Qz(z
fb(θw), θw) +Qθ(z

fb(θw), θw) · θfb′(zfb(θw)).

The first equation results from the first-order condition of MP u(z, θ); the second is just the

total derivative of W fb(z). Rearranging and substituting (2.1), we have

W fb′(zfb(θw))−W u′(zfb(θw)) = Qθ(z
fb(θw), θw) · θfb′(zfb(θw)) +

1− F (θw)

f(θw)
Czθ(z

fb(θw), θw).

Given Assumption 5.1, the RHS can change its sign only once for different values of θw.

Suppose that zu(θ) intersects zfb(θ) more than once, then the directions of the first three

intersections are from below, from above, and from below; thereby, W u(z) intersects W fb(z)

first from above, then from below, and then from above. This means that the LHS of the

above equation will change its sign more than once, a contradiction. Thus, we conclude that

zu(θ) intersects zfb(θ) only once and from below. Then, W fb′(zfb(θw))−W u′(zfb(θw)) > 0,

meaning that the RHS of the above equation is positive. By the definition of θ∗, we have

Qθ(z
fb(θ∗), θ∗) · θfb′(zfb(θ∗)) +

1− F (θ)

f(θ)
Czθ(z

fb(θ∗), θ∗) = 0.

It is readily confirmed by Assumption 5.1 that θw > θ∗. Thus, the proposition is proven.
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Proof of Proposition 5.5.

Proof. We only need to prove that zu(θ) < zs(θ) on [θu0 , θ̄]. From the first-order conditions,

we can derive W u(z) and W s(z), respectively, by the initial value problems (IVP) below:

W u′(z) = Gz(z, θ
u(w, z)) and W s′(z) = Cz(z, θ

s(w, z)),

with the initial points (zo(θo0),W u(zo(θo0))) and (zo(θo0),W s(zo(θo0))) for W u(z) and W s(z),

respectively. It is easy to see that Gz(z, w) ≥ Cz(z, w) in any common domain of (z, w).

From Corollary 4.1, we have zo(θ) < zs(θ) on [θ, θ̄], and thus, θo0 > θs(zo(θo0)). This implies

that W u(zo(θo0)) > W s(zo(θo0)). Then, appealing to Hartman (1964, Corollary 4.2, page 27),

we have W u(z) > W s(z) in any common domain. This implies that θu(z) > θs(z) in any

common domain; therefore, zu(θ) < zs(θ) on [θu0 , θ̄].

A.2 Equilibrium Selection for the Unobserved Case

Here, we discuss equilibrium selection for the unobserved case. We present two lemmas. By

Lemma A.1, we characterize the school-optimal separating equilibrium given that θo0 > θ; by

Lemma A.2, we show that the school-optimal separating equilibrium is also the least-cost

separating equilibrium with respect to the total cost of education.

Lemma A.1. Given that θo0 > θ, the school-optimal separating equilibrium exists in the

unobserved case, such that (θu0 , z
u(θu0 )) = (θo0, z

o(θo0)).

Proof. As a first step, we show that the cutoff type’s education level zu(θu0 ) is an increasing

function of θu0 . From the proof of Proposition 5.1, we have θu0 ≥ θo0 > θ. Thus,

MP u(zu(θu0 ), θu0 ) = MP o(zu(θu0 ), θu0 ) = 0.

Given Assumption 2.1, MP o(z, θ) is regular; zo(θu0 ) is the unique maximizer of MP o(z, θu0 ).

From the proof of Proposition 5.1, we have zu(θu0 ) ≥ zo(θu0 ) for each separating equilibrium.

Then, regularity implies that zu(θu0 ) is the unique solution to the above equation given an

admissible θu0 , and zu(θu0 ) is increasing. Thus, zu(θu0 ) is an increasing function of θu0 .

Second, we show that for any two admissible initial points (θ̂u0 , ẑ
u(θ)) and (θ̃u0 , z̃

u(θ)), if

θ̂u0 < θ̃u0 , then ẑu(θ) < z̃u(θ) in any common domain. From Mailath (1987, Theorem 3), for

every separating equilibrium, zu(θ) satisfies (5.1). Rearranging (5.1), we have

zu′(θ) =
Qθ(z

u(θ), θ)

Gz(zu(θ), θ)−Qz(zu(θ), θ)
.
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equilibrium initial points
in the uboserved case

z(θ)

0
θ

the observed case, zo(θ)

θ̄u0 θ̄

equilibrium education functions
in the uboserved case

θo0

Figure 5: The Family of Separating Equilibria. This figure illustrates the family of separating equilibria

in the unobserved case given that θo0 > θ. The blue area depicts the set of equilibrium education functions.

This region is uniformly above the equilibrium education function in the observed case zo(θ). The bold line is

the set of equilibrium initial points with the cutoff type ranging from θo0 to θ̄u0 . Each point uniquely determines

an equilibrium education function zu(θ) and thus an equilibrium outcome. This figure considers the same

numerical example as Figure 1, such that the set of the initial points is {(θ, z)|z(θ) = 3θ − 1; 1
3 ≤ θ ≤

1
2}.

From the first paragraph, if θ̂u0 < θ̃u0 , then ẑu(θ̂u0 ) < z̃u(θ̃u0 ). Appealing to Hartman (1964,

Corollary 4.2, page 27), we have ẑu(θ) < z̃u(θ) in the common domain [θ̃u0 , θ̄].

Third, we characterize zu(θ) for all separating equilibria. To do so, we have to determine

the domain of zu(θu0 ), which depends on the market belief off the equilibrium path. As have

been shown, the lower bound of θu0 is θo0, which is supportable if any off-path education is

believed to be chosen by type θo0. As the off-path belief gets gradually harsher, θu0 increases

continuously, until the labor market holds the worst belief θ off the equilibrium path. It is

without loss of generality to confine the off-path education to [0, zu(θu0 )) when zu(θu0 ) > 0.

Denote by θ̄u0 the upper bound of θu0 , which is pinned down by

max
z<zu(θ̄u0 )

{Q(z, θ)−G(z, θ̄u0 )} = MP u(zu(θ̄u0 ), θ̄u0 ) = 0.

That is, the school is indifferent between allocating type-θ̄u0 the optimal off-path education

such that it is believed as type-θ and maintaining the equilibrium allocation. Therefore, we

have determined the domain of zu(θu0 ). Then, picking any θu0 ∈ [θo0, θ̄
u
0 ], we can uniquely pin

down a zu(θ). Figure 5 illustrates the education functions of all separating equilibria.
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Finally, we show that the initial point of the school-optimal separating equilibrium is

(θu0 , z
u(θu0 )) = (θo0, z

o(θo0)). Pick two equilibrium education functions, ẑu(θ) and z̃u(θ), such

that ẑu(θ) < z̃u(θ) on the common support [θ̃u0 , θ̄]. Since zu(θ) ≥ zo(θ) on [θu0 , θ̄] for every

separating equilibrium, we have ẑu(θ) − zo(θ) < z̃u(θ) − zo(θ) on [θ̃u0 , θ̄]. Thus, regularity

implies that MP u(ẑu(θ), θ) > MP u(z̃u(θ), θ) on [θ̂u0 , θ̄] ⊃ [θ̃u0 , θ̄]. Then,

Πu(θ̂u0 )− Πu(θ̃u0 ) =

∫ θ̄

θ̂u0

MP u(ẑu(θ), θ)dF (θ)−
∫ θ̄

θ̃u0

MP u(z̃u(θ), θ)dF (θ) > 0.

The inequality is due to the fact that both the integrand and the integral domain of Πu(θ̂u0 )

are bigger than those of Πu(θ̃u0 ). This result reveals that the lower the cutoff type, the higher

the school’s equilibrium payoff. Since θu0 ∈ [θo0, θ̄
u
0 ], the school-optimal separating equilibrium

must be the one in which θu0 = θo0, and thus, zu(θu0 ) = zo(θo0).

Lemma A.2. In the school-optimal separating equilibrium, the cutoff type θu0 chooses his

full-information optimal education level under the total cost function T u(z) + C(z, θu0 ), i.e.,

zu(θu0 ) = argmax
z

Q(z, θu0 )− T u(z)− C(z, θu0 ).

Proof. First, we characterize T u(z) on R+. On the equilibrium path, T u(z) is given by

T u(zu(θ)) = S(zu(θ), θ)− Uu(θ) = S(zu(θ), θ) +

∫ θ

θu0

Cθ(z
u(s), s)ds.

Then, we smoothly extend T u(z) to R+. First, from (5.2), we have limz→zu(θ̄)
− T u′(z) = 0.

It is thus natural to extend T u(z) horizontally upto +∞. Second, if zu(θu0 ) > 0, then we

smoothly extend T u(z) to the left by extending the solution to the IVP that is defined by the

differential equation in (5.2) and the initial condition that (θu0 , z
u(θu0 )) = (θo0, z

o(θo0)), until

T u(z) or z reaches 0, whichever is earliest. The rest part of T u(z) is fixed at 0. Thus, T u(z)

is fully characterized on R+. To ensure that such T u(z) is incentive compatible, we simply

assume that the labor market holds the worst belief θ for any off-path education level, so

that no type will deviate to the off-path.

Thus, given T u(z), it suffices to prove that the following first-order condition holds.

Qz(z
u(θu0 ), θu0 )− T u′(zu(θu0 ))− Cz(zu(θu0 ), θu0 ) = 0. (A.1)

Note that MP o(z, θ) is regular, zo(θo0) maximizes MP o(z, θo0) and zu(θu0 ) = zo(θo0), thus

MP o
z (zu(θu0 ), θu0 ) = Qz(z

u(θu0 ), θu0 )−Gz(z
u(θu0 ), θu0 ) = 0.

Substituting Gz(z
u(θu0 ), θu0 ) using (5.2) and the definition of G(z, θ), we obtain (A.1).
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A.3 Unproductive Education

Here, we consider the case in which education is a pure signal. Without loss of generality, we

assume that Q(θ) = θ > 0 on [θ, θ̄]. Thus, the social surplus function S(z, θ) is decreasing

in z, meaning that zero education is socially optimal, i.e., zfb(θ) ≡ 0.

We start with the observed case and focus on the school-optimal separating equilibrium.

Unlike the productive education case, the worker’s outside option is now endogenous, which

depends on the off-path belief. Without loss of generality, we assume that the labor market

holds the worst belief θ for all positive off-path education levels. The equilibrium wage for

zero education, W (0), equals E[θ|θ ∈ [θ, θ0)] with the market belief updated by Bayes’ rule.

Thus, the worker’s outside option is endogenously given by E[θ|θ ∈ [θ, θ0)]. Analogously to

Section 2.1, the school’s problem can be stated as

max
z(θ)

∫ θ̄

θ0

{
S(z(θ), θ) +

1− F (θ)

f(θ)
Cθ(z(θ), θ)− E[θ|θ ∈ [θ, θ0)]

}
dF (θ).

subject to z(θ) being increasing on [θ0, θ̄]. Substituting Q(θ) and G(z, θ) into the integral,

we can succinctly write the school’s value function as

max
z(θ)

∫ θ̄

θ0

{θ −G(z(θ), θ)− E[θ|θ ∈ [θ, θ0)]} dF (θ).

Suppose that in equilibrium θ0 > θ, then by differentiating the value function with respect

to θ0 and rearranging, we obtain the derivative as

f(θ0) ·G(z(θ0), θ0)− f(θ0)

F (θ0)
(θ0 − E[θ|θ ∈ [θ, θ0)]) .

Note that z(θ0) must be zero. Suppose not, then z(θ) > 0 for all θ ∈ [θ0, θ̄], as z(θ) is

increasing. But since the marginal profit θ − G(z, θ) is decreasing in z, it is profitable to

reduce all positive z(θ) by a fixed small amount, a contradiction. Hence, G(z(θ0), θ0) = 0.

Note too that θ0 > E[θ|θ ∈ [θ, θ0)]. Hence, the above derivative is negative, meaning that

the school can make a profitable deviation by lowering θ0, a contradiction. Thus, θ0 = θ in

equilibrium. Then, the school’s problem can be reduced to

max
z(θ)

∫ θ̄

θ

[θ −G(z(θ), θ)] dF (θ)− θ.

subject to z(θ) being increasing on [θ, θ̄]. Note that the integrand is decreasing in z. Thus,

the school has an incentive to allocate as little of education as possible to the worker. Since

the school cannot charge the worker for zero education, the “optimal” allocation is increasing
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and infinitesimal education. Formally, zo(θ) is increasing on [θ, θ̄] with zo(θ) = 0; for ∀ ε > 0,

we have zo(θ) < ε. Under this allocation, social welfare is arbitrarily close to the first-best

level, and the school’s payoff is equal to social welfare minus arbitrarily small information

rents and a positive rent θ for participation.

We now turn to the unobserved case. Similarly, we assume that the labor market holds the

worst belief for all positive off-path education levels. Since the wage schedule is independent

of the actual tuition scheme, the school’s problem can be similarly stated as

max
z(θ)

∫ θ̄

θ0

{W (z)−G(z(θ), θ)− E[θ|θ ∈ [θ, θ0)]} dF (θ).

subject to z(θ) being increasing on [θ0, θ̄]. In equilibrium, W (z(θ)) = θ, thus, by the same

argument as in the observed case, we have θ0 = θ. Consequently, the analysis in Section 5

is completely applicable to this case. Specifically, the school-optimal separating equilibrium

exists in the unobserved case, such that zu(θ) = 0, zu(θ) is increasing over [θ, θ̄], and zu(θ)

satisfies the first-order condition

Qθ(z
u(θ), θ) · θu′(zu(θ))−Gz(z

u(θ), θ) = 0.

Note that zu(θ) is positive for ∀ θ ∈ (θ, θ̄]. Thus, zu(θ) ≥ zo(θ) on [θ, θ̄], with strict inequality

for θ > θ; that is, the worker obtains more education in the unobserved case than in the

observed case, and thus, Theorem 5.1 still holds. Because education is unproductive, social

welfare is unambiguously higher in the observed case. Indeed, by the definition in Section 4,

the intensity of signaling is infinity for unproductive education, as the equilibrium education

levels are positive in Spence’s model (Spence 1973), but the fist-best education level is zero;

thus, the observed case yields higher social welfare. Since education levels are higher in the

unobserved case, the school leaves more information rents to the worker, and thus, the worker

is better off in the unobserved case. But since social welfare is lower in the unobserved case,

the school which is a residual claimant must be worse off than in the observed case.
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