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Abstract

We study a team incentive design problem where multiple agents are located on a

network and work on a joint project. The principal seeks the least costly mechanism

to incentivize full effort, by choosing the work assignment sequence and the rewards to

the agents upon success. Whereas the agents’ actions are hidden to the principal, they

may be observed among the agents given the internal information that is determined

by the network and the sequence. Under effort complementarity, the transparency of

the agents’ actions can reduce their incentive costs, but exhibits diminishing marginal

effectiveness. This gives rise to the desire for balancing internal transparency when it

is infeasible to uniformly enhance transparency. For several typical network topologies,

we derive explicit properties of an optimal assignment sequence, and propose two new

measures, total cost and stability, for the principal to rank these networks.
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1 Introduction

In many organizations, incentivizing efficient teamwork depends critically on exploiting in-

ternal information. That is, while an agent’s effort is unobserved externally by the principal,

it can be peer-monitored internally among agents, in the sense that actions by early movers

in a team are observed by some late movers. The principal then leverages on such observation

structure to reduce incentive costs. Meanwhile, a prominent feature of modern organizations

is flexible task assignment: Unlike in conventional waterfall teams, the principal can largely

determine the order of completing individual tasks, e.g., in film production that involves

independent crews in different locations, or for an NSF-funded R&D project that requires

joint effort by various laboratories or universities. It therefore stands out as a challenging

and important problem to design the optimal task assignment, which essentially generates a

peer-monitoring structure. Referring to Holmstrom (1982)’s classic remark, “...monitoring

technologies were exogenously given. In reality, they are not. The question is what deter-

mines the choice of monitors; and how should output be shared so as to provide all members

of the organization (including monitors) with the best incentives to perform?”

As pointed out by relevant literature (e.g., Maskin et al. (2000)), tackling this problem

is closely related to understanding the influence of organizational form, as different organi-

zational forms will give rise to different information about performance. In this paper, we

adopt a general, network-based perspective on organizational forms, and study a principal

who designs the peer monitoring structure in this context. The principal faces an exogenous

network topology governing available internal information among agents, and endogenously

chooses the sequence of task assignment and the associated rewards. We contribute to the

literature by identifying two key leverages for the principal to exploit internal information

and minimize incentive costs, as well as how they are explicitly reflected by the properties

of optimal sequences under various types of network topologies. We also propose a number

of analytical tools, such as algorithms for identifying an optimal sequence and measures for

ranking network topologies by the principal’s preference.

In the model, a number of teams collaborate on a risky project. Every team consists of

multiple agents, with one being the manager and the others subordinates, and each agent is

responsible for an individual task. An agent can increase the chance of the project’s success

by exerting costly effort, while the exact marginal effect of his effort depends on other team

members’ inputs. Throughout the paper, we mainly focus on complementary technologies,

i.e., the probability of success is supermodular in agents’ efforts. Before performing his task,

an agent can potentially observe the efforts chosen by earlier movers. The observability of
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effort, or peer monitoring structure, is governed by an exogenous and undirected network,

which dictates the connections between agents within and across teams. If two agents i and

j are linked, then j can observe whether i exerted effort when j moves after i, and vice versa.

The principal cannot observe the effort choice of any agent but is aware of the network

topology, and aims at inducing effort from each agent at the lowest possible costs. Our main

departure from the literature on incentive design in teams is the set of available mechanisms

that the principal can choose. Specifically, the principal determines (1) the work sequence,

i.e., the sequence of moves by the agents, and (2) the reward to each agent upon success

of the project. That is, a feasible mechanism consists of both pecuniary and non-pecuniary

incentive instruments. To the best of our knowledge, this paper is the first to investigate the

optimal work sequence in a team incentive design problem.

Drawing on relevant literature such as Winter (2010), we have a ready characterization

of the optimal reward scheme given a fixed sequence of moves. Hence, our analysis focuses

on the novel element of designing an optimal sequence, which is both a sequence of moves

and a sequence of peer monitoring, given the network topology. We start by deriving the

optimal sequence for a single team, whose network topology takes the form of either a star

or a clique. The results demonstrate two fundamental economic forces that the principal

may leverage for reducing incentive costs. First and intuitively, the principal always benefits

if she can improve the internal transparency of each agent’s action. This implies that the

total incentive cost under any network is bounded below by that under a clique network,

in a sequence where the agents move one after another and each observes their immediate

predecessor. The second and more novel force is diminishing marginal benefit from internal

transparency, implying that the principal seeks to properly balance internal transparency

when uniform improvement of transparency is impossible. For example, under a star network,

a trade-off typically arises between the rewards offered to the manager’s predecessors (the

monitored) and those to the successors (the monitors), when the principal compares two

different sequences. Nevertheless, we show that the marginal total incentive cost is monotone

in the number of the manager’s successors, and an optimal sequence can thus be identified

by a straightforward algorithm. This sequence always assigns less subordinates as monitors

than as monitored agents, which stems from balancing internal transparency.

We then focus our main analysis on collaborating teams of possibly heterogeneous sizes.

We examine two classes of networks based on how the team managers are connected. The first

class includes flat organizations, where the managers form a clique, and can be categorized

as non-divisional or divisional according to whether managers are linked to subordinates in

3



other teams. For each category, we further divide the networks by the topology within teach

team, which is either a clique or a star. The second class includes hierarchical organizations,

where the managers are connected through a tree network. Similarly, we divide the class

into hierarchical cliques and hierarchical stars, according to the topology within each team.

The following table summarizes the types of networks examined in this paper.

Within\Across
teams

Flat: managers form a clique Hierarchical:

managers form a treeNon-divisional: manager

linked to other teams’

subordinates

Divisional: manager not

linked to other teams’

subordinates

Clique Dense core-periphery Connected cliques Hierarchical cliques

Star Core-periphery Connected stars Hierarchical stars

Table 1: Categories of networks for multi-team organizations.

While the type of network varies, the principal consistently relies on the aforementioned

leverages—uniformly improving internal transparency, or balancing internal transparency

based on diminishing marginal benefit if necessary—when designing an optimal sequence.

However, the network topology largely determines the manifestation of either leverage, i.e.,

the same economic force may induce entirely distinct properties for different networks. In

non-divisional networks, improving internal transparency requires that no two managers are

assigned adjacent to one another in an optimal sequence, but there is a group of subordinates

moving between each two managers. Diminishing marginal benefit further implies that the

group size of these subordinates must decrease over time. In divisional networks, improving

internal transparency serves as the dominant force in shaping an optimal sequence, but

predicts a non-monotone pattern in team size over time. In the special case of homogeneous

team sizes, one can resort to diminishing marginal benefit and identify an optimal sequence

via a simple algorithm. Finally, the characterization of an optimal sequence in hierarchical

networks resembles that for a star: A number of managers move before the top manager (root

of the tree) with all or most subordinates as their predecessors, while the other managers

move after the top manager with all or most subordinates as their successors. The former

group is typically larger than, or not much smaller than, the latter group.

In response to Holmstrom (1982)’s remark, the assignment of roles between monitors

and the monitored is now endogenous and again depends crucially on the network topology.

In networks with rich global (intra-team) connections, e.g., non-divisional networks, most

agents do not serve as either role, but essentially become “intermediaries” who monitor all
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predecessors and are monitored by all successors. By contrast, in divisional or hierarchical

networks, the managers are intermediaries while every subordinate is endogenously made a

monitor (i.e., moving after their manager) or a monitored agent (i.e., moving before their

manager). As a uniform property for such networks, we find that monitors only take up an

infinitesimal proportion of agents as the number of agents grows to infinity. This observation

is the product of two forces. On the one hand, each monitor’s action remains unobserved or

is only observed by a limited number of peers, so incentivizing a monitor’s effort is relatively

expensive. On the other hand, diminishing marginal benefit of transparency implies that too

many monitors would prove inefficient for lowering the incentive costs of monitored agents

after all.

Based on the characterization of optimal sequences, we further develop two measures by

which the principal may compare different network structures. The first is the measure of

total cost, where we identify the minimal set of essential links for a sequence by transitive

reduction, and impose a maintenance cost for every such link. The principal then chooses a

sequence to minimize the sum of maintenance costs and incentive costs. The second is the

measure of stability, where we calculate the maximum fraction of links in a network that can

be severed, conditional on preserving the transitive reduction for minimizing incentive costs.

Although the two measures differ significantly by nature, we find very consistent results for

comparing the above types of networks. With either measure, the principal always prefers a

network to another if the former offers higher internal transparency of each agent’s action.

Therefore, the network structure most favorable to the principal is the dense core-periphery

network, and the least favorable network is the hierarchical-stars network. A more interesting

comparison is between a core-periphery network and a connected-cliques/hierarchical-cliques

network, noting that the former represents rich global connections while the latter rich local

connections. We find that, with homogeneous team sizes and by either measure, the principal

prefers the former network when team size is fixed and team number extends to infinity, but

the latter network when team number is fixed and team size extends to infinity.

The rest of the paper is organized as follows. Section 1.1 below discusses related literature.

Section 2 describes the model. Sections 3 and 4 provide preliminary analysis for the optimal

reward, as well as characterization of optimal sequences in a single team. Section 5 presents

the main results for optimal sequences in collaborating teams. Section 6 introduces measures

for network comparison and the related results. Section 7 concludes our paper. All proofs

are in the Appendix.
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1.1 Related literature

The theoretical literature on incentive design for teamwork is extensive and growing. The

trade-off an agent faces between working and shirking originated from the classical literature

on moral hazard in teams (Alchian and Demsetz, 1972; Holmstrom, 1982; Holmstrom and

Milgrom, 1991; Itoh, 1991). Subsequent studies developed this literature to static contracting

on teamwork with a number of variations, such as externalities (McAfee and McMillan, 1991;

Segal, 1999; Babaioff et al., 2012), specialization versus multitasking (Balmaceda, 2016), loss-

averse agents (Balmaceda, 2018), network-based production spillover (Sun and Zhao, 2021),

and network-based equity compensation (Dasaratha et al., 2023). Our main contribution to

this literature is to consider the endogenization of internal information among the agents in

the presence of moral hazard.

Several recent papers have investigated how including or altering the scheme of infor-

mation sharing among agents affects incentive design. Zhou (2016) shows that the welfare-

optimal organization of team members is a chain when the first mover observes the state

of nature and the later movers observe their immediate predecessor’s effort. Our analysis

produces a similar result when the exogenous network of internal information is complete.

Gershkov et al. (2016) study the efficient contract design given that some team member

may share information about a payoff-relevant state, and they show that efficiency can be

achieved if contracts take into account a contest ranking across agents. Au and Chen (2021)

characterize the optimal long-term contract in teams of two members, with efforts observ-

able between the paired agents. In Camboni and Porcellacchia (2021), the principal observes

noisy signals about efforts, and may condition the contract offered to each team member on

both her individual signal and the whole project’s outcome. The optimal incentive scheme

features a partition between insulated and non-insulated agents ranked by signal precision.

A comprehensive study on the role of internal information in effort-based teamwork, with

an exogenous sequence of task assignment, has been provided by Winter (2004, 2006, 2010).

This is the main strand of literature we follow on building the theoretical framework. Our

results indicate that some peer information architectures are more likely to emerge than

others, once the sequence becomes the principal’s choice. Halac et al. (2021) also investigate

the incentive design problem in teamwork in the presence of moral hazard, but the principal

leverages uncertainty of ranking among agents instead of internal information. Consequently,

they show that discrimination is suboptimal in contrast to Winter (2004). Gershkov and

Winter (2015) study the optimal incentive design with fixed work sequence, random peer

monitoring and the principal’s choice of costly individual monitoring, and they show that
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peer monitoring substitutes for the principal’s monitoring when the production technology is

complementary. The broad idea of the interplay between early and late movers in teams, and

how a designer can exploit such structure for efficiency or cost saving, have also been studied

from other perspectives including information-based leadership (Hermalin, 1998; Zhou and

Chen, 2015; Zhou, 2016), tournaments in team production (Gershkov et al., 2009, 2016) and

various forms of payoff externalities (Che and Yoo, 2001; Segal, 2003; Bernstein and Winter,

2012). In addition, Xiang (2020) considers a simultaneous-move team moral hazard problem

where an agent may bribe their monitors, and shows that an optimal monitoring structure

must have a core-periphery topology.

The importance of internal information in incentive design has also been noted by data.

Empirical evidence suggests that workers’ productivity and willingness to work respond

positively to observed efforts of peers (Ichino and Maggi, 2000; Heywood and Jirjahn, 2004;

Gould and Winter, 2009; Mas and Moretti, 2009). Experimental studies on behavior in team

production have also indicated that an agent’s contribution in teamwork is highly responsive

to internal information (Carpenter et al., 2009; Steiger and Zultan, 2014) and that unequal

rewards tend to facilitate coordination and improve efficiency (Goerg et al., 2010).

2 Model

Players and actions. A principal (she) owns a project that is collectively managed by a set

I of n agents. The agents are grouped into a set T of teams. Each team t ∈ T consists of a

manager, denoted lt, and ft ≥ 2 subordinates ; each agent’s role will be specified later. Each

agent i (he) is responsible for an individual task, and chooses ai ∈ Ai ≡ {0, 1}, with ai = 1 if

he exerts effort, and ai = 0 if he shirks. The cost of effort is 1 across all the agents, whereas

shirking is costless. Henceforth, we use the terms work and exert effort interchangeably.

Technology. The organization’s technology is a mapping from a profile of effort levels to a

probability of the project’s success. Given a subset I ′ ⊆ I of working agents, the probability

of success is p(I ′). We assume that p is increasing such that if I ′′ ⊂ I ′, then p(I ′′) < p(I ′).

Moreover, we assume that p satisfies complementarity in the sense that for any two subsets

I ′ and I ′′ with I ′′ ⊂ I ′ and any agent i /∈ I ′, p(I ′ ∪ {i})− p(I ′) > p(I ′′ ∪ {i})− p(I ′′); that is,

i’s effort is more effective if the set of other working agents enlarges.1 We also distinguish

between different agents’ importances to the project. We say that agent i is (weakly) more

1Conversely, p satisfies substitutability if the inequality changes direction. It follows from Winter (2010,
Proposition 2) that under substitutability, each agent’s optimal reward and thus the optimal mechanism will
be invariant with the internal information (see below for details). Thus, we do not consider substitutability.
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important than j if for any subset I ′ with i, j ∈ I ′, we have p(I ′\{i}) ≤ p(I ′\{j}); that is,
i’s shirking is more detrimental than j’s to the chance of success. We assume that the set I

is totally ordered in terms of agent importance.

Network. The agents are connected by a deterministic and undirected network g. We write

ij ∈ g to indicate that agents i and j are directly linked, and say that i and j are neighbors.

In particular, ii /∈ g for any agent i, and the assumption that g is undirected implies that

ij ∈ g ⇔ ji ∈ g. In applications of our framework, network g could capture the workplace

architecture, the authority structure, geographical locations, informal social networks and

so forth. We assume that the structure of g is common knowledge.

Mechanism. Before the agents perform their tasks, the principal designs a work sequence,

or simply a sequence, π, such that agent i is the πi-th player to move, with πi ∈ {1, . . . , n}.
The sequence π can be interpreted from dual perspectives. In agile projects such as software

development and market campaigns, the work sequence has become remarkably more flexible,

allowing for adjustments. In this context, π can be interpreted quite literally. Conversely, in

projects with a less flexible work sequence but versatile agents competent in diverse tasks, π

can be seen as the assignment of tasks among these agents. In addition to the sequence, the

principal designs a reward scheme v = (v1, . . . , vn), such that agent i receives vi ≥ 0 if the

project turns out to be successful, and receives zero reward otherwise. The principal cannot

monitor the agents’ efforts, but simply knows whether the project is successful after all the

tasks have been performed. In summary, a mechanism {π, v} consists of a sequence π and a

reward scheme v. We assume that the principal can commit to the mechanism.

Internal information. The agents’ internal information about their peers’ effort levels is

jointly determined by the network g and the sequence π. Specifically, agent i observes agent

j’s action, or simply i sees j, before i moves if and only if i and j are neighbors and i moves

after j.2 That is, ij ∈ g means that i can see j based on the network, and i will see j when

he moves after j. As such, the sequence π determines a directed network based on g, with

each arc indicating who sees whom. We call such a directed network a monitoring network.

For each π, we define Ni(π) := {j|ij ∈ g, πi > πj}, Ni for short, to be the set of agents whom

agent i sees in the resulting monitoring network.

Principal’s problem. Consider the game that is defined by the set of agents I, the agents’

action space {Ai}i∈I , the network g and a mechanism {π, v}. A (pure) strategy of agent i is

2If i and j move simultaneously, then neither of them can see the other.

8



a mapping σi : 2
Ni → {0, 1}, which specifies i’s action as a function of his information about

other agents’ efforts. Given a strategy profile σ = (σ1, . . . , σn), agent i’s payoff is given by

Ui(σ) := p(W (σ))vi − (σi = 1),

where W (σ) is the set of working agents given σ, and (·) is the indicator function.

A mechanism {π, v} is effort-inducing (EFI) with respect to the network if there exists a

perfect Bayesian equilibrium (PBE) in the resulting game, in which every agent exerts effort.

The principal’s problem is to design an EFI mechanism that yields minimal total rewards to

the agents among all EFI mechanisms, which is called an optimal mechanism. In particular,

given a sequence π, a reward scheme v∗(π) is optimal if {π, v∗(π)} is an optimal mechanism.

The principal’s objective is meaningful when the project’s value is sufficiently high and the

agents’ efforts are efficient to raise the probability of success. Alternatively, one can consider

the mechanisms that maximize the principal’s expected net revenue, but we refrain from this

approach, as it does not provide new insights while complicates the analysis remarkably.

3 Preliminary analysis

3.1 Optimal reward scheme and action transparency

As a first step, we characterize the optimal reward scheme for a fixed sequence π, applying

Winter (2010)’s main result.3 Define Mi(π), Mi for short, to be the set of agents such that

for every j ∈ Mi, there exists a sequence {kr} such that j sees k1 sees k2 sees . . . kr sees i.

We call the agents in Mi those who can learn i’s action based on the idea that everyone in

Mi would be informed of i’s action if an agent could communicate with those who see him.

The lemma below characterizes the optimal reward scheme v∗(π) for an arbitrary π.

Lemma 1. For any fixed sequence π, the optimal reward scheme v∗(π) pays agent i a reward

equal to v∗i (π) = [p(I)− p(I\({i} ∪Mi))]
−1.

Intuitively, when agents move sequentially, they are facing an implicit threat of shirking.

Specifically, the exposure of a low effort might induce an agent who observes this action to

shirk and consequently triggers a domino effect of shirking, making success less likely. This

implicit threat thus reduces the agent’s incentive cost. Under a complementary technology

3Winter (2010) characterizes the optimal reward scheme for a fixed internal information structure under
complementarity (see Winter (2010, Proposition 4)).
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and the optimal reward scheme, it is indeed sequentially rational for an agent to shirk once

he sees someone shirking, rendering the implicit threat credible.

Lemma 1 indicates that if agent i’s action becomes more transparent in the sense that if

the set Mi enlarges, then i should be paid less, because he is more willing to work under a

larger implicit threat. That is, with effort complementarity, action transparency can reduce

an agent’s incentive cost. Furthermore, Lemma 1 implies that the marginal effect of action

transparency is diminishing as the action becomes more transparent. To see this, suppose a

subset I ′ of agents who could not learn agent i’s action now learn his action, then the change

in v∗i equals [p(I)− p(I\({i} ∪Mi))]
−1 − [p(I)− p(I\({i} ∪Mi ∪ I ′))]−1, or equivalently,

p(I\({i} ∪Mi))− p(I\({i} ∪Mi ∪ I ′))

[p(I)− p(I\({i} ∪Mi))][p(I)− p(I\({i} ∪Mi ∪ I ′))]
. (1)

Note that as the set Mi enlarges, the numerator decreases due to complementarity, while the

denominator increases due to monotonicity. Thus, the ratio decreases. That is, the marginal

reduction in i’s reward diminishes as his action becomes more transparent. Intuitively, under

complementarity, a low effort is less detrimental to success when there are more agents who

choose to shirk. This lowers the marginal benefit of action transparency. To summarize,

Corollary 1. For any agent i, v∗i is decreasing in Mi. Furthermore, suppose in sequences π

and π′, the set of agents who can learn i’s action is given by Mi and M ′
i , respectively, where

M ′
i = Mi ∪ I ′ for some I ′ ∕= ∅ with I ′ ∩Mi = ∅, then |v∗i (π′)− v∗i (π)| is decreasing in Mi.

Corollary 1 indicates that while action transparency can reduce an agent’s incentive cost,

the marginal benefit of transparency diminishes when the action becomes more transparent.

Put differently, the benefit function of action transparency is increasing but strictly concave.

This novel insight will play a central role in achieving our main results. Since I is finite, the

existence of an optimal mechanism is guaranteed by Lemma 1; thus, it remains to find such

a mechanism by characterizing the optimal sequence. Let V ∗(π) :=
󰁓

v∗i (π) denote the total

rewards to the agents given the sequence π.

3.2 Properties of the optimal sequence

This section presents two general results that hold for any network g. First, we show that if

two agents are neighbors, they cannot move simultaneously in the optimal sequence π∗.

Lemma 2. For any two agents i and j, if ij ∈ g, then π∗
i ∕= π∗

j .
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Intuitively, letting two neighbors move simultaneously reduces the transparency of their

actions, thereby weakening the implicit threat of shirking and thus increasing incentive costs.

In short, having two agents moving simultaneously is a waste of transparency.

Second, we show that if two agents share the same set of neighbors other than themselves

and either one can learn the other’s action in the optimal monitoring network, then the more

important agent moves later. Formally, we have the following lemma.

Lemma 3. For any two agents i and j such that {k|ik ∈ g, k ∕= j} = {k|jk ∈ g, k ∕= i} and

i is more important than j, if in π∗ either i ∈ M∗
j or j ∈ M∗

i , then π∗
i > π∗

j .

Intuitively, if the more important agent i moves before the less important agent j, then

it is profitable to switch their orders. Since i and j share the same set of neighbors other

than themselves, swapping i and j would only affect the rewards of i, j and every agent k

such that j ∈ Mk and i /∈ Mk, i.e., the agents whose actions can be learned by j but not i.

In particular, the principal can reduce k’s reward by replacing j’s position with i, because if

k shirks he will then trigger a more important agent to shirk, leading to a greater implicit

threat. Analogously, i’s new reward will be lower than j’s old reward, while j’s new reward

equals i’s old reward. Therefore, the principal can reduce the total rewards by assigning the

more important agent to the later stage.

4 Single team

In this section, we consider the case in which there is only one team (i.e., T is a singleton).

We fully characterize the optimal mechanism for two canonical network structures that are

common in real-world organizations: clique, where the agents are fully connected, and star,

where the manager is the center of the star, and the subordinates are the peripheral agents.

This analysis serves two purposes. First, cliques and stars will function as the fundamental

components for the subsequent analysis of multi-team organizations. Second, by examining

these simple networks, we can clarify how the structure of exogenous network affects that of

the optimal monitoring network, and how an agent’s position in the network, as well as his

importance to the project, jointly determine his role in the monitoring network.

4.1 Clique

Assume that the agents are fully connected. For example, many modern organizations have

embraced open-space environments, or “war rooms”. Such workplace architectures notably
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promote the transparency of employers’ actions and the opportunities for peer monitoring.

Therefore, such an environment can be considered a clique network. Lemma 2 implies that

in the optimal sequence, the agents move sequentially in the order 1, 2, . . . , n. Thus, agents

in later stages effectively serve as the monitors of the team, and will punish shirking actions

by shirking as well. Moreover, Lemma 3 implies that the agents move in ascending order of

importance; thus, the monitors are relatively more important. For ease of exposition, relabel

the agents such that agent i is less important than i + 1, i ≤ n − 1. The next proposition

characterizes the optimal sequence in a clique network.

Proposition 1. If g is a clique network and the agents are increasingly important, then the

optimal sequence π∗ is the identity permutation.

Proposition 1 echos the main result of Winter (2006) where the agents must perform the

tasks sequentially and can observe all preceding actions, such that in the optimal sequence

the agents move in ascending order of importance. In our setting, within a clique network,

such a sequence is not only feasible but also optimal. Thus, Winter (2006)’s main result can

be regarded as a special case of ours. Moreover, the corollary below indicates that the total

rewards to the agents are the least in a clique network among all network structures, since

a clique network can generate the most transparent monitoring network.

Corollary 2. A clique network generates minimal total payoffs to the agents, thereby max-

imizing the payoff to the principal.

4.2 Star

Assume that the manager (center) is connected to all the subordinates (peripheral agents),

each of whom is only connected to the manager. For example, in a scientific lab, the project

leader typically plays a central role in the team, while each fellow researcher focuses on his or

her individual task and reports progress exclusively to the leader. Such a team thus exhibits

a star network structure. Other examples of star network might include a general contractor

and subcontractors, a book editor and chapter contributors, and so forth.

To find the optimal sequence for a star network, note that it suffices to characterize the

set of the center’s successors, with the possibility of an empty set. For ease of exposition, we

relabel the peripheral agents by importance from 1 to n − 1, with a higher index referring

to a more important agent. Provided there is no confusion, let the center be the n-th agent

who is not necessarily the most important agent. Note that every peripheral agent has the

same unique neighbor, i.e., the center. Then, by Lemma 3, we have the following lemma.
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Lemma 4. If in π∗ the center has both a nonempty set of predecessors and a nonempty set

of successors, then the successors are uniformly more important than the predecessors.

The intuition of Lemma 4 has been suggested already; that is, if more important agents

move in later stages, then a low effort will trigger agents with higher importance to shirk

and is thus more detrimental to success, thereby allowing the principal to reduce incentive

costs. The relative importance between the center’s predecessors and successors implies that

the optimal sequence for a star network can be summarized by a sufficient statistic, that is,

the number of the center’s successors.4 Let m be the number of the center’s successors, with

0 ≤ m ≤ n− 1. Thus, the center has n− 1−m predecessors; if any of them shirks, then the

center and all his successors shirk accordingly under the optimal reward scheme. Similarly,

if the center shirks, then all his successors shirk as well. In contrast, the center’s successors

cannot trigger anyone to shirk because their actions are unobservable. Define V ∗(m) as the

total rewards to the agents under the optimal reward scheme when the m most important

peripheral agents move after the center. Thus, by Lemma 1, V ∗(m) equals

n−1−m󰁛

i=1

1

p(I)− p({j|j < n−m}\{i})
󰁿 󰁾󰁽 󰂀

rewards to the predecessors

+
1

p(I)− p({j|j < n−m})󰁿 󰁾󰁽 󰂀
reward to the center

+
n−1󰁛

i=n−m

1

p(I)− p(I\{i})
󰁿 󰁾󰁽 󰂀

rewards to the successors

.

To find the optimizer m∗, we compare V ∗(m) with V ∗(m+1); the difference between the

two items is the marginal impact of an additional successor on the total rewards. By direct

calculation, for any integer m with 0 ≤ m ≤ n− 2, V ∗(m+ 1)− V ∗(m) equals

n−2−m󰁛

i=1

󰀗
1

p(I)− p({j|j < n−m− 1}\{i}) −
1

p(I)− p({j|j < n−m}\{i})

󰀘

+
1

p(I)− p({j|j < n−m− 1}) −
1

p(I)− p({j|j < n−m})

+
1

p(I)− p(I\{n−m− 1}) −
1

p(I)− p({j|j < n−m− 1}) . (2)

The sum of the first two lines in (2) is the change in rewards for the center and his n−2−m

predecessors. Since p is increasing, this value is negative. Intuitively, as the center has more

successors, his action and his remaining predecessors’ actions become more transparent, and

thus, these agents’ incentive costs are lower. In this regard, we call the negative of the first

4Note that the relative order between the center’s predecessors or successors does not affect their incentive
costs, since each agent’s action is equally transparent for the predecessors and successors, respectively.
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two lines the marginal benefit (MB) of additional successors. Formally, we define

MB(m) :=
n−2−m󰁛

i=1

󰀗
1

p(I)− p({j|j < n−m}\{i}) −
1

p(I)− p({j|j < n−m− 1}\{i})

󰀘

+
1

p(I)− p({j|j < n−m}) −
1

p(I)− p({j|j < n−m− 1}) .

In contrast, the last line in (2) is positive, which is the increase in the new successor’s reward,

noting that his action becomes less transparent. Thus, we call the sum of the two terms the

marginal cost (MC) of additional successors. Formally, we define

MC(m) :=
1

p(I)− p(I\{n−m− 1}) −
1

p(I)− p({j|j < n−m− 1}) .

It follows from Corollary 1 that MB(m) is decreasing in m, as the marginal benefit of action

transparency is diminishing. On the other hand, note that each new successor of the center

is less important than the current ones, meaning that his new reward is higher than that of

any other successor. Moreover, the transparency of the new successor’s original action (when

he was the center’s predecessor) is increasing in m; in turn, his original reward is decreasing

in m. Together, we have that MC(m) is increasing in m. To summarize,

Lemma 5. MB(m) is decreasing in m, whereas MC(m) is increasing in m.

Lemma 5 ensures that there exists a unique optimizer m∗ (either an interior solution or a

corner solution). Therefore, the optimal sequence is essentially unique and can be succinctly

characterized by an integer m∗ which is given by

m∗ := min{m|MB(m) ≤ MC(m)}. (3)

It follows that one can easily pin down m∗ by increasing m one by one from 0 until the first

time when MB(m) ≤ MC(m). Formally,

Proposition 2. If g is a star network, then the optimal sequence π∗ satisfies that the center

has m∗ successors, each of them is more important than the center’s predecessors, where m∗

is given by (3) with 0 ≤ m∗ ≤ n − 2. In particular, if all the agents are equally important,

then 1 ≤ m∗ < n/2. In contrast, if [p(I)− p(I\{n})] ≥ (n − 1) [p(I)− p(I\{n− 1})], then
m∗ = 0, where {n} is the center and {n− 1} is the most important peripheral agent.

Proposition 2 asserts that the manager (center) never moves the first. Suppose not, then

it is profitable to switch the order of the manager and a subordinate. Note that in the new
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sequence, the subordinate’s action is as transparent as the manager’s old action, which will

be learned by all the other agents, while the manager’s action is more transparent than the

subordinate’s old action which is unobservable. Since any other agent’s reward remains the

same, the total rewards are strictly lower in the new sequence.

In particular, if the manager is significantly more important than any other agent, then

he should move the last, since in this case his predecessors will have relatively low incentive

costs due to a significant implicit threat of shirking imposed by him, whereas his successors

will be relatively expensive to incentivize as their actions will be unobservable.

In contrast, if the agents are equally important, then the manager always moves in some

interior stage. This is because with identical importance, each agent i’s payoff depends only

on the cardinality of Mi, |Mi|, irrespective of his identity. If the manager moves in an interior

stage, his successors can effectively monitor his predecessors through him, as if he served as

an internal information intermediary. In summary, the manager never moves the first in the

optimal sequence; instead, he moves either the last or in some interior stage, depending on

his relative importance. This pattern is a direct result of leveraging action transparency.

Furthermore, Proposition 2 indicates that if the agents are equally important, then the

number of the manger’s successors is (weakly) less than that of his predecessors. This result

follows from the diminishing marginal benefit of action transparency. To see the intuition,

suppose by contradiction m∗ ≥ n/2, then consider a new sequence π′ in which one of his m∗

successors, denoted i, moves before the manager. This change has two implications. On the

one hand, each action of the manager and his predecessors (in total n−m∗ actions) is learned

by one fewer agent. On the other hand, agent i’s acton is learned by m∗ more agents. Note

that in π∗, each action of the manager and his predecessors is more transparent than that of

agent i. Moreover, in π′, the transparency (measured in |M |) of each of those n−m∗ more

transparent actions decreases by 1, whereas that of the less transparent action of i increases

by m∗. Since m∗ ≥ n−m∗, the diminishing marginal benefit of action transparency ensures

that such an “exchange”, or balancing, of transparency is desirable. This effect is analogous

to the desire for consumption smoothing with diminishing MRS.

Summary. The analysis in this section reveals that the exogenous network structure plays

a significant role in determining the optimal monitoring network. In a clique network, since

the agents are fully connected, the optimal monitoring network can simply achieve the most

transparent structure characterized by a line. In contrast, a star network has a much sparser

structure, having the minimal amount of links needed to connect all the agents. As a result,

the optimal monitoring network cannot be determined by directly maximizing transparency;
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(a) A clique network (left) and a possible optimal sequence (right). The agents always move sequentially.

(b) A star network (left) and a possible optimal sequence (right). The manager never moves the first.

Figure 1: The optimal sequences for a clique and a star network. The examples in panels (a) and (b) share
the same number of agents, n, and the same technology, p. However, in (a), g represents a clique network,
while in (b), it represents a star network. In this figure and any subsequent figures, a blue node represents
a manager, and a yellow one represents a subordinate. In addition, when illustrating the optimal sequence,
we assume that the agents move in a left-to-right order.

instead, it balances two countervailing motives: To enlarge the set of the center’s predecessors

to increase the number of monitored and less-rewarded agents, and to enlarge the set of the

center’s successors who monitor the center and his predecessors but are themselves relatively

expensive to incentivize. Under the diminishing marginal benefit of action transparency, the

optimal monitoring network can be determined by a unique number of the center’s successors

through a simple algorithm. In particular, when the agents are equally important, the center

always has (weakly) fewer successors than predecessors, to balance internal transparency.

Furthermore, the analysis also reveals how an agent’s position in the exogenous network

affects his role in the optimal monitoring network. Note that in a clique network the agents’

positions are symmetric, while in a star network the manager is centrally located and all the

subordinates are in peripheral positions. As a consequence, the optimal sequence of a clique

network depends only on the importance ranking of the agents, while in a star network the

manager must move after some subordinate to facilitate peer monitoring. Moreover, in both

networks, more important agents will move in later stages to enhance the implicit threat of

shirking. These findings are illustrated in Figure 1.

5 Multiple teams

We now turn to the case in which there are multiple teams, all of them are characterized by

either clique networks or star networks. Our primary goal is to further investigate how the

connectivity structure of these teams affects the optimal monitoring network. This analysis
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can yield valuable insights into understanding how the internal information within large-scale

organizations depends on their organizational structures. We consider two typical structures:

a flat organization in which the managers are interconnected, and a hierarchical organization

in which the managers are connected through a top manager. Within the first class, we also

distinguish between a non-divisional network and a divisional network, which only differ in

whether a manager is also linked to the subordinates of other teams.

For tractability, we hereafter assume that each agent is equally important to the project.

Thus, the success probability is given by an increasing and convex function p(·), where the

input is the number of agents who work. Moreover, we can now measure the transparency of

each agent i’s action by |Mi|. For ease of exposition, we proceed to study the aforementioned

network structures in approximately descending order of network density.

5.1 Non-divisional network: Dense core-periphery

Assume that each team is characterized by a clique network and each manager is connected

to all the other agents. We call such a network a dense core-periphery network, denoted gdcp.

Figure 2 depicts an example of gdcp. Note that dense core-periphery networks exhibit a nice

property for solving the optimal sequence. Specifically, gdcp has an open Hamilton walk, i.e.,

a walk that involves every node in the network exactly once. For example, as illustrated in

Figure 2, such a walk can begin with any manager and visit every subordinate in the same

team exactly once, then turn to a different manager, repeating the process of visiting all the

remaining managers and their subordinates until reaching the final unvisited agent. Such a

sequence is clearly optimal as it generates the most transparent internal information; indeed,

it aligns with an optimal sequence when the agents are fully connected. Formally,

Proposition 3. If g is a dense core-periphery network, then the optimal sequence π∗(gdcp)

is an open Hamilton walk in g, in which there can be at most two adjacent managers.

Proposition 3 implies that the optimal monitoring network is essentially characterized by

an alternating pattern between the managers and their subordinates. Such a pattern allows

the principal to leverage the high density of gdcp, especially the high degrees of the managers,

to establish a line-structured monitoring network, thereby maximizing internal information.

Without loss of generality, we focus on the open Hamilton walk that starts with the manager

from the largest team and sequentially visits every subordinate in the same team, then visits

the remaining teams in descending order of team size. Therefore, the number of subordinates

across managers is decreasing along the sequence.
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Figure 2: Example of a dense core-periphery network (top) and a resulting optimal sequence (bottom).

5.2 Non-divisional network: Core-periphery

Assume that each team is characterized by a star network and each manager is connected

to all the other agents. Such a network is therefore a core-periphery network, denoted gcp.

Figure 3 depicts an example of gcp. In contrast to a dense core-periphery network, a core-

periphery network has much sparser within-team connections, as each pair of subordinates

is not connected. It can be shown that there does not exist an open Hamilton walk in such

a network, thus characterizing the optimal sequence is much more challenging than in dense

core-periphery networks. However, we can derive some important properties of the optimal

sequence, which are presented in the proposition below.

Proposition 4. If g is a core-periphery network, then the optimal sequence π∗(gcp) can be

characterized by a series of positive integers {sq}|T |+1
q=1 , such that sq subordinates move before

the q-th manager for q ≤ |T |, and s|T |+1 subordinates move after the last manager, satisfying
󰁓|T |+1

q=1 sq =
󰁓

t∈T ft. Moreover, sq ≥ 1 and is nonincreasing in q for all 1 ≤ q ≤ |T |+ 1.

Proposition 4 indicates that the optimal monitoring network of a core-periphery network

also exhibits a similar alternating pattern between managers and subordinates. Specifically,

any two managers cannot be adjacent, and any manager cannot move the first or the last in

the entire sequence. This pattern also follows from leveraging action transparency. Suppose

by contradiction there are two adjacent managers in the optimal monitoring network, then

by the pigeonhole principle and the structure of gcp, there are multiple subordinates moving

between two other managers and parallel to each other. Now, move one of the subordinates

to between the two adjacent managers. Doing so essentially transforms simultaneous moves

into sequential moves, thereby enhancing peer monitoring. Thus, we obtain a contradiction.

Similarly, a manager cannot be either the first mover or the last mover in the sequence.
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Figure 3: Example of a core-periphery network (top) and a possible optimal sequence (bottom).

Therefore, in the optimal monitoring network, every manager is positioned between two

groups of subordinates. Within each group, agents are unable to see each other, while agents

in the later group can learn each agent’s action in the earlier group through the manager. It

follows that such a subgraph has a star network structure. Since managers and subordinates

alternate in the optimal sequence, by an analogous argument as in Section 4.2, the number of

subordinates across managers is nonincreasing along the optimal sequence, as characterized

by Proposition 4. This pattern is illustrated by Figure 3.

Summary. Propositions 3 and 4 together reveal that the optimal monitoring network of a

non-divisional network, including dense core-periphery and core-periphery networks, exhibits

an alternating pattern between managers and subordinates, with the number of subordinates

across managers nonincreasing along the optimal sequence. The alternating pattern follows

directly from leveraging the non-divisional structure to facilitate peer monitoring, while the

monotonicity of the number of subordinates between managers is driven by the diminishing

marginal benefit of action transparency.

5.3 Divisional network: Connected-cliques

Assume that each team is characterized by a clique network and all the managers are inter-

connected. We call such a network a connected-cliques network, denoted gcc. Figure 4 depicts

an example of gcc. In contrast to the above non-divisional networks, since any two teams are

connected only through their managers, Lemma 2 implies that the managers form a line in
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Figure 4: Example of a core-periphery network (top) and a possible optimal sequence (bottom).

the optimal monitoring network, thereby serving as the internal information intermediaries

of the organization. Moreover, since every team is a clique, in the optimal sequence, within

each team the agents also form a line. For ease of exposition, provided there is no confusion,

we hereafter call a subordinate who moves before his manager a predecessor, and who moves

after his manager a successor. In addition, we say that a team is a type-I (type-III ) team if

all the subordinates are predecessors (successors), and a type-II team if it is neither type-I

nor type-III. We also say that team t moves before team t′ if t’s manager moves before t′’s.

The lemma below characterizes the optimal relative order among teams of the same type.

Lemma 6. If g is a connected-cliques network, then along the optimal sequence π∗(gcc): (i)

the size of type-I team, if it exists, is nonincreasing; (ii) both the numbers of predecessors

and successors of type-II team, if it exists, are decreasing; (iii) the size of type-III team, if

it exists, is nondecreasing; (iv) all type-I teams move before all type-III teams, if they exist.

Lemma 6 results from leveraging action transparency. Note that if team t is type-I, then

its subordinates’ actions can be learned by its manger lt and those who can learn lt’s action.

Conversely, if team t is type-III, then its subordinates can learn lt’s action and those can be

learned by lt. Therefore, assigning a larger type-I team to an earlier stage can improve the

transparency of more actions, while assigning a larger type-III team to a later stage enables

a larger number of agents to monitor more agents. Moreover, suppose a type-I team moves

after a type-III team, then it is clearly desirable to switch the order of the two teams, since

it reduces at least the rewards to the subordinates of that type-I team.

Regarding type-II teams, consider two such teams t and t′, such that t moves before t′ in

20



π∗(gcc). Suppose there are (weakly) more successors in t′ than in t, then reduce a successor

in t and increase a successor in t′, such that agents within each team also form a line; denote

the new sequence π′. Let i be the immediate successor of lt within t in π∗(gcc), and j be the

immediate successor of lt′ within t′ in π′. Note that the net change in action transparency

between π∗(gcc) and π′ in t is as if i’s transparency increased from |M∗
i | to |M ′

lt
|, and that in

t′ is as if lt′ ’s transparency decreased from |M∗
lt′
| to |M ′

j|. In addition, the actions of all the

managers and predecessors between t and t′ are more transparent in π′ since there are more

successors in t′, and the action of any other agent is as transparent as before. Since there are

more successors in t′ than in t in π∗(gcc), and the total number of successors in t′ and t are

unchanged, we have |M∗
i | < |M ′

j| and |M ′
lt
| > |M∗

lt′
|. Thus, the increase in transparency in t

exceeds the decrease in transparency in t′, a contradiction. This also implies that a type-III

team must move after any type-II team with more successors than it.

Next, suppose there are (weakly) more predecessors in t′ than in t. From the above, t has

more successors than t′. Switch the order of t and t′. As such, the actions of the predecessors

in t′ become more transparent, while those of the predecessors in t are now less transparent.

Moreover, the actions of all the managers and predecessors between t and t′ become more

transparent given that t has more successors than t′. Since there are more predecessors in t′

than in t, such an change increases the transparency of a larger number of actions in t′ more

than it decreases the transparency of actions in t, a contradiction. This also implies that a

type-III team must move after any type-II team with fewer successors than it.

Then, combining the above paragraphs, we have that any type-III team must move after

all type-I and type-II teams, if they exist. Moreover, to enhance transparency, in the optimal

sequence, clearly, the first team must be a type-I team, and the last team must be a type-III

team. To summarize, we have the following proposition.

Proposition 5. If g is a connected-cliques network, then along the optimal sequence π∗(gcc):

(i) the first team is a type-I team and the last team is a type III-team; (ii) all type III-teams

move after all type-I and type-II teams; (iii) the relative order among teams of the same type

satisfies Lemma 6. Furthermore, if the size of any team is at least half the size of any other

team, then all type-II teams, if they exist, move between type-I teams and type-II teams. In

particular, if each team has the same size, then there exists at most one type-II team.

Proposition 5 indicates further that if the heterogeneity of team sizes is relatively small,

then all type-II teams, if they exist, should move between type-I teams and type-III teams,

such that in the optimal sequence, it is successively type-I, type-II, and type-III teams. This

is because if a type-I team moves after a type-II team, the relatively small difference in team
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sizes allows for enough flexibility to improve the transparency by switching either the order

or the type of these two teams, so that some agents’ actions are strictly more transparent.

Furthermore, if the team sizes are identical, then one can fully characterize the optimal

sequence by a simple algorithm. To illustrate, let mt be the number of successors in team t,

and
󰁓

mt be the total number of successors. Define MB(
󰁓

mt) as the marginal benefit of

increasing
󰁓

mt, which equals the decrease in rewards for the managers and predecessors in

teams before the new successor’s team. Define MC(
󰁓

mt) as the marginal cost of increasing
󰁓

mt, which equals the increase in rewards for the new successor’s team, as if the manager

moved from his initial position to the current position of his immediate successor within his

team. In the appendix, we show that MB(
󰁓

mt) is always decreasing, whereas MC(
󰁓

mt)

is decreasing within any team but increasing across teams. Thus,

Corollary 3. Suppose each team has the same size, then π∗(gcc) can be fully characterized

through the following algorithm:

1. Set each team t a type-I team, i.e., mt = 0, t ∈ T .

2. From the last team to the first team, increase mt one by one until the first team such

that MB(
󰁓

mt) < MC(
󰁓

mt), and denote this team t∗.

3. Within team t∗, search the optimal m∗
t∗ that minimizes the total rewards.

5.4 Divisional network: Connected-stars

Assume that each team is characterized by a star network and all the managers are inter-

connected. We call such a network a connected-stars network, denoted gcs. Figure 5 depicts

an example of gcs. Similar to connected-cliques networks, in the optimal monitoring network

of a connected-stars network, the managers also form a line. We also define analogously the

concepts of predecessor and successor, as well as type-I, type-II and type-III teams. Using a

similar argument as in Section 5.3, we have the following proposition.

Proposition 6. If g is a connected-stars network, then in the optimal sequence π∗(gcs), the

foremost segment consists of a possibly empty set of type-I teams, organized in descending

order of size. Following this, there may be at most one type-II team, succeeded by another

possibly empty set of type-III teams, organized in ascending order of size. Moreover, the sets

of predecessors and successors are both nonempty.

Proposition 6 indicates that in the optimal monitoring network, all the subordinates can

be divided into two groups: the earlier group consists of only predecessors, whereas the later
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Figure 5: Example of a connected-stars network (top) and a possible optimal sequence (bottom).

group consists of only successors. To see the intuition, consider changing a predecessor into

a successor. Note that the marginal benefit of an additional successor is higher within a later

team, since a successor in a later team can learn more preceding actions. Note too that the

marginal cost of an additional successor equals the increase in reward for the new successor.

Since a successor’s action is unobservable, and a predecessor’s action is more transparent if

he is in an earlier team, the marginal cost is lower within a later team. This implies that all

predecessors move before all successors. It follows that the optimal monitoring network has

at most one type-II team, which is between type-I and type-II teams, if they exist.

Furthermore, when both type-I and type-II teams exist, the optimal monitoring network

exhibits a “V-shape”. As illustrated in Figure 5, T can be basically divided into two groups:

in the earlier group, each team is a type-I team, organized in descending order of size, and in

the later group, each team is a type-III team, organized in ascending order of size. Note that

each subordinate in type-III teams effectively monitors those in type-I teams through the

managers. By allocating larger teams towards either end of the sequence, one can enhance

the monitoring of a greater number of agents through an increased number of monitors.

While Proposition 6 provides only a partial characterization of the optimal sequence, it

rules out most suboptimal sequences. Specifically, given the number of teams |T |, there are

in total |T |! possible permutations of teams. However, the number of the permutations that

satisfy Proposition 6 is around
󰁓|T |

k=0 C(|T |, k) = 2|T |,5 which is of lower order of |T |! for a
5Partition the stars into two groups, in the first each subordinate is a predecessor, whereas in the second

each subordinate is a successor. Let k be the number of stars in the first group. Then, the relative order of
teams is given by Proposition 6. The number of possible permutations is thus 2|T |.
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large |T |. Moreover, if the relative order among teams in π∗(gcs) is known, then π∗(gcs) can be

fully characterized by a simple algorithm as in Corollary 3. Define analogously MB(
󰁓

mt)

and MC(
󰁓

mt). As discussed previously, MB(
󰁓

mt) again stems from the improvement of

transparency of all the actions that can be learned by the new successor, while MC(
󰁓

mt)

is instead given by the increase in reward for the new successor. Similar to a single star, we

have that MB(
󰁓

mt) is decreasing whereas MC(
󰁓

mt) is increasing in
󰁓

mt. Thus,

Corollary 4. Suppose the managers move according to the optimal sequence π∗(gcs), then

π∗(gcs) can be fully characterized through the following algorithm:

1. Set each team t a type-I team, i.e., mt = 0, t ∈ T .

2. From the last team to the first team, increase mt one by one until the first time when

MB(
󰁓

mt) ≤ MC(
󰁓

mt). The resulting sequence is exactly π∗(gcs).

When the number of teams |T | is relatively small, it is convenient to characterize π∗(gcs)

by applying the algorithm in Corollary 4 to the set of undominated sequences characterized

by Proposition 6. In contrast, when both n and |T | are large, there are still numerous feasible

ways to group the teams, making such a method impractical. Nevertheless, we can show that

under some mild conditions—the following Assumption 1 for example—the total number of

successors
󰁓

m∗
t in π∗(gcs) is of lower order of n. That is, the set of successors amounts for

only a small fraction of the organization. This enables us to significantly reduce the number

of possible combinations for type-III teams, thereby eliminating numerous suboptima.

Assumption 1. For any positive integers m ≤ n, we have

1

m
[p(n)− p(n−m)] ≥ K[p(n)− p(n− 1)]

for some constant K > 0.

Assumption 1 requires that the marginal productivity of the last unit of effort cannot be

infinitely higher than the average marginal productivity of any number of efforts; otherwise,

MC(
󰁓

mt) might be relatively low for a broad range of
󰁓

mt, such that a large fraction of

subordinates are successors. Moreover, in a connected-cliques network, if each team’s size is

small relative to the population n, then Assumption 1 also ensures that the total number of

successors is of lower order of n. Formally,

Proposition 7. Given Assumption 1, in the optimal sequence of a connected-stars network,

the number of successors is bounded above by some number of order
√
n, as n → ∞. Also, in
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a connected-cliques network, as n → ∞, if the size of each team is bounded by some constant,

then the number of successors is also bounded above by some number of order
√
n.

We sketch the proof of Proposition 7 here by focusing on a connected-stars network gcs.

The argument for a connected-cliques network with bounded team sizes is analogous. First,

we shall show that given any number of successors
󰁓

mt, the marginal benefit MB(
󰁓

mt)

in gcs is lower than the marginal benefit MB(m) in a single star with a same n, if in gcs, the

number of the agents who move before the manager of the first non-type-I team is equal to

the number of the center’s predecessors in the star. Intuitively, since gcs is denser than star,

the agents will have more transparent actions in gcs than in the star. Under the diminishing

marginal benefit of action transparency, MB(
󰁓

mt) is less than the corresponding MB(m),

and thus, there will be fewer successors in gcs than in the star. Next, we shall show that the

number of successors in the star is of order
√
n given Assumption 1. This is because on the

one hand, the marginal benefit of action transparency is diminishing. On the other hand, a

successor is relatively expensive to incentivize due to his unobservable action. As a result,

MB(m) will soon be exceeded by MC(m), leading to a small m∗ and thus a small
󰁓

m∗
t .

Proposition 7 offers an important insight in understanding the role of peer monitoring.

That is, whereas peer monitoring is beneficial in cutting the agents’ incentive costs, within a

divisional network, as well as a star network, the monitors themselves are relatively costly to

incentivize, as there are few or no individuals who will monitor the monitors. Consequently,

the number of monitors accounts for only a small fraction of the entire population.

Summary. The analysis in Sections 5.3 and 5.4 reveals that the optimal monitoring network

of a divisional network is prominently different from that of a non-divisional network. Note

that a non-divisional network will yield a monotone structure of monitoring network, in the

sense that managers and subordinates alternate in the optimal sequence and the number of

subordinates across managers is nonincreasing. In contrast, a divisional network will yield a

non-monotone structure of monitoring network, in the sense that larger teams are assigned to

either end of the optimal sequence. Specifically, subordinates in earlier stages are effectively

monitored by subordinates in later stages, through the managers who serve as the internal

information intermediaries. Moreover, in a divisional network, monitors are relatively costly

to incentivize, since their actions are unobservable; thus, there will be a small set of monitors

clustering in the end of the optimal sequence.
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5.5 Hierarchical networks

We now turn to a hierarchical network, in which there is a special team in T , which consists

of a single agent h ∈ I, referred to as the top manager, such that the manager of any other

team is directly linked to h, and there are no direct links between any two agents i, j ∕= h,

who are from different teams. Similarly, we study networks in which all teams, except for the

special team, are characterized by either cliques or stars, referred to as a hierarchical-cliques

network and a hierarchical-stars network, respectively.

We first consider a hierarchical-cliques network, denoted ghc. Figure 6 depicts an example

of ghc. We define type-I, type-II and type-III teams in the same way as for connected-cliques

networks. Given the structure of ghc, by Lemma 2, every manager moves either before h or

after h. The next proposition characterizes important properties for the optimal monitoring

network of a hierarchical-cliques network.

Proposition 8. If g is a hierarchical-cliques network, then in the optimal sequence π∗(ghc),

every team before h is a type-I team, and every team after h is a type-III team; both the sets

of type-I and type-III teams are nonempty. Moreover, let x and y be the numbers of agents

before and after h, respectively, and let t be the smallest team after h. Then, x > y − 2ft.

Proposition 8 indicates that the optimal monitoring network of ghc has a similar structure

as a single star: the top manager is located in the central position, moving after a nonempty

set of type-I teams and before a nonempty set of type-III teams; thus, the agents in type-III

teams can effectively monitor those in type-I teams through the top manager, who serves as

the internal information intermediary.

Furthermore, Proposition 8 asserts that there are relatively few agents moving after the

top manager: the number of these agents is less than around half of the population. Similar

to a single star, if there are many agents after the top manager, then there will be few agents

before him, whose actions are relatively transparent. With the diminishing marginal benefit

of action transparency, it is profitable to move the smallest team after the top manager to

before him and make it a type-I team, because the benefit of increasing the transparency of

those less transparent actions outweighs the cost of reducing the transparency of those more

transparent ones. That is, the distribution of agents across the top manager is driven by the

desire for balancing internal transparency.

Now, we turn to a hierarchical-stars network, denoted ghs. Figure 7 depicts an example of

ghs. The next proposition shows that the optimal monitoring network of a hierarchical-stars

network has a similar star structure, with relatively few agents after the top manager.
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Figure 6: Example of a hierarchical-cliques network (left) and a possible optimal sequence (right).

Proposition 9. If g is a hierarchical-stars network, then in the optimal sequence π∗(ghs),

either (i) every team before h is a type-I team, and every team after h is a type-II or type-III

team, or (ii) every team before h is a type-I or type-II team, and every team after h is a

type-III team; both the sets of teams before and after h are nonempty. Let m∗
t be the number

of successors in each team t. For any two type-II teams t′ and t′′ with ft′ < ft′′, m
∗
t′ ≤ m∗

t′′.

Moreover, let x be the number of managers and predecessors before h, and y be the number of

managers and successors after h, and let t be the smallest team after h. Then, x > y − 2ft.

Unlike in a hierarchical-cliques network, in a hierarchical-stars network, there may exist

some type-II teams in the optimal monitoring network, in which case, all type-II teams must

be either before or after the top manager. This is due to the similar reason that a successor

should not move before a predecessor, as this could hinder peer monitoring. Moreover, the

number of successors in a type-II team is nondecreasing in its size. This again follows from

the desire for balancing internal transparency. Specifically, if a larger type-II team has fewer

successors than a smaller type-II team, then there are at least two more predecessors in the

larger team, and each predecessor in the larger team has a more transparent action than his

counterpart in the smaller team. This implies that it is profitable to increase a successor in

the larger team, while simultaneously decrease a successor in the smaller team.

Given the star structure of the optimal monitoring network in a hierarchical network, it

is reasonable to expect that the set of successors (monitors) still constitutes a small fraction

of the entire organization as it expands. This intuition holds true if the size of each team is

bounded by some constant. Formally,

Proposition 10. Given Assumption 1, suppose as n → ∞, the size of each team is bounded

by some constant in both a hierarchical-cliques and a hierarchical-stars network. Then, in the

optimal sequence of each network, the number of managers and successors after h is bounded

above by some number of order
√
n, as n → ∞.
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Figure 7: Example of a hierarchical-stars network (left) and a possible optimal sequence (right).

The intuition is similar to that of Proposition 7. In a hierarchical network, all successors

after the top manager effectively monitor all predecessors before the top manager, reducing

the incentive costs of those monitored. However, those monitors are significantly expensive

to incentivize, as their actions are much less transparent. Thus, there is only a small fraction

of agents who serve as monitors, when each team is relatively small; otherwise, it is desirable

to balance internal transparency by moving a team after the top manager to before the latter,

and making it a type-I team, so that the subordinates in this team become monitored.

Summary. The analysis in this section reveals that the optimal monitoring network within

a hierarchical network resembles a star, with the top manager positioned centrally. A group

of agents following the top manager effectively monitor those preceding him through the top

manager and team managers. With the desire for balancing internal transparency, there will

be relatively few agents after the top manager, especially when n is large.

6 Comparison of networks

The previous analysis demonstrated how different network structures may result in different

optimal monitoring networks and thus different internal information. It is natural to further

investigate which network structure the principal would prefer. In this section, we compare

the networks studied in Section 5 based on two criteria: total cost and stability, which will

be formally defined later. The purpose of this analysis is to provide insights into identifying

effective and efficient organization structures for leveraging peer monitoring.

To facilitate comparison, in this section, we assume homogeneous team sizes: ft ≡ f̂ for

some integer f̂ ≥ 2, except for the special team with top manager in a hierarchical network.6

We also impose additional structure on the production function p, such that for arbitrarily

6In this section, the top manager is not considered as one of the agents; thus, the principal does not need
to provide incentives to him. The top manager will work if and only if he does not see anyone shirking.
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large n, p(n) ≡ p0, p(n− 1) ≡ p1, p(n− 2) ≡ p2, . . . , where 1 ≥ p0 > p1 > p2 > · · · ≥ 0 are a

sequence of constants; that is, for any fixed n, the i-th highest output level, p(n+ 1− i), is

given by the i-th number in the sequence {p0, p1, p2, . . . }. To ensure that complementarity

still holds, we assume that for n′ = 0, 1, . . . , pn′ − pn′+1 strictly decreases in n′.

6.1 Ranking networks by total cost

Given the set of agents I, if adding links to g were costless, then by Corollary 1, the principal

would always prefer a supergraph of g to g. In reality, however, adding and maintaining links

between agents are often expensive or even infeasible, especially for those indispensable for

a desired monitoring network. Thus, to offer an interesting and practical comparison among

different networks, we shall measure the cost of implementing a monitoring network, which

is jointly determined by g and π. To implement a particular monitoring network of g, it is

possible that not all links in g are necessary; that is, some links are essential while the rest

are not. In this regard, we modify a terminology in graph theory, the transitive reduction,

to characterize the “minimal” network needed to implement a given monitoring network:

Definition 1. Given a sequence π, the transitive reduction of g is a network g̃(π; g) ⊆ g, g̃

for short, such that (i) v∗(π) is identical under g and g̃, and (ii) there does not exist another

network g′ ∕= g̃, which satisfies (i) but with fewer links.

For example, as illustrated in Figure 1, to implement the optimal monitoring network of

a clique network, the transitive reduction g̃ is a line. We assume that each link in g̃ incurs a

maintenance cost c > 0. Then, we define the total cost of network g as the minimized sum of

the costs of maintaining links in g̃ and the total rewards under the resulting optimal reward

scheme. Formally, the total cost is given by

C(g) := min
π

󰀗
V ∗(π; g) +

c|g̃(π; g)|
2

󰀘
,

where V ∗(π; g) is the minimized total rewards given π and g. Note that the cardinality of an

undirected network, |g̃|, equals twice the number of links in g̃, as ij ∈ g̃ ⇔ ji ∈ g̃. Note too

that the cost-minimizing sequence is not necessarily the optimal sequence as defined before,

since the principal now faces a trade-off between link maintenance costs and total rewards.

To distinguish between the two sequences, we call the former an efficient sequence.

We also assume that c is sufficiently small, such that an efficient sequence always results

in a connected transitive reduction, i.e., every two agents are connected by some path in g̃.

The next proposition ranks the networks studied in Section 5 in terms of total cost.
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Proposition 11. Let G := {gdcp, gcp, gcc, gcs, ghc, ghs}. For sufficiently small c > 0:

(i) C(gdcp) < C(g) for all g ∈ G, g ∕= gdcp, while C(ghs) > C(g) for all g ∈ G, g ∕= ghs;

(ii) C(gcc) < min{C(gcs), C(ghc)}, and C(gcp) < C(gcs);

(iii) C(gcp) < C(gcc) < C(ghc) when f̂ is fixed and |T | is sufficiently large, while C(gcc) <

C(ghc) < C(gcp) when |T | is fixed and f̂ is sufficiently large.

Statements (i) and (ii) summarize a number of intuitive general properties of total cost.

If g is a supergraph of g′, so that some agents are strictly better connected in g than in g′,

then C(g) < C(g′). This is reflected by that in G, gdcp is the least costly network and ghs

is the most costly one, as well as that C(gcc) < C(gcs) < C(ghs), C(gcc) < C(ghc) < C(ghs),

and C(gcp) < C(gcs) < C(ghs), as indicated by (i) and (ii). The reason why g must bear a

lower total cost, even though links in its transitive reduction may be more costly, is twofold.

On the one hand, g can yield more internal information and thus requires lower total rewards

for full effort. On the other hand, the larger number of links in g typically does not add to

link maintenance costs in its transitive reduction; for example, the transitive reduction of gcc

and that of gcs share the same number of links. Even if it does, the definition of total cost

implies that it can only be in the principal’s interest to implement a transitive reduction in

g with more links. For example, between gcp and gcs, the principal could always choose the

same sequence and pay lower total rewards in gcp. Thus, if an efficient sequence in gcp leads

to a transitive reduction that is more than minimally connected, it must be that having more

links reduces total rewards more than their maintenance costs.

More interestingly, statement (iii) highlights a novel trade-off between global and local

connections. To illustrate, we compare gcp with gcc and ghc, noting that gcp has the maximal

inter-team links among the networks in G, while gcc and ghc have every possible intra-team

link. While C(gcc) < C(ghc) for all n, how they compare asymptotically to C(gcp) depends

on the dimension along which the organization expands: The principal will ultimately prefer

the global connection provided by gcp as the number of teams increases (|T | → ∞), but prefer

the local connection provided by gcc or ghc as the size of each team increases (f̂ → ∞).

The rationale behind this insight lies in understanding how the principal may create the

maximal internal information with the minimal link maintenance costs, as |T | → ∞ and as

f̂ → ∞, respectively. First, when f̂ is fixed and |T | → ∞, we compare gcc and gcp. Since an

efficient sequence of each g ∈ G results in a connected transitive reduction, π∗(gcc) is indeed

an efficient sequence of gcc, as it yields a minimally connected monitoring network with n−1

links. Since team size is identical, Proposition 5 implies that in π∗(gcc), all subordinates in
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earlier stages are predecessors and form a line in own team, and the remaining subordinates

are successors and form a line in own team. Given the structure of p, successors will require

remarkably higher rewards than others. It follows that in π∗(gcc), the number of teams with

successors is of lower order of |T |, as |T | → ∞. Let T ′ and I ′ denote the set of these teams,

and the set of managers and successors within these teams, respectively.

Now, construct a sequence π′ for gcp by alternating managers and subordinates one by

one in all teams to form a line, and assigning each remaining subordinate to before the first

manager; the length of this line is 2|T |. We compare the total rewards between gcc and gcp

in three steps. First, the last |I ′| agents in the line of gcp require lower rewards than those in

I ′ of gcc, since the former agents’ actions are more transparent. Second, note that in π∗(gcc),

the first team and all managers not in I ′ together form a line with a length f̂ + |T | − |T ′|.
Meanwhile, in π′, the next-to-last f̂ + |T |− |T ′| agents remain in the line, as both |T ′| and
|I ′| are small relative to |T |. Thus, the f̂ + |T |− |T ′| agents in π′ also require lower rewards

than their counterparts in π∗(gcc). Finally, among the remaining agents in π∗(gcc), the first

agent in the second team has the most transparent action, which can be learned by less than

|T |+ |I ′| agents, whereas in π′, each remaining agent’s action can be learned by 2|T | agents;
thus, the latter agents require lower rewards. Together, we have that the total rewards are

lower in π′ than in π∗(gcc). Since π′ also yields a monitoring network with n− 1 links, and

is not necessarily an efficient sequence of gcp, gcp must incur a lower total cost than gcc. In

short, when |T | is large, gcp allows the principal to align agents in a significantly longer line

than in gcc or ghc, thereby enhancing peer monitoring with minimal links.

In contrast, when |T | is fixed and f̂ → ∞, the principal can create a significantly longer

line in gcc or ghc than in gcp. To see this, compare again gcc and gcp. Proposition 5 indicates

that the last team in π∗(gcc) is a type-III team, so any agent outside this team is monitored

by at least 1 + f̂ agents, or equivalently 1/|T | fraction of all the agents. On the other hand,

it can be shown that as f̂ → ∞, in any efficient sequence of gcp, either a substantial fraction

of agents move between the first and the last managers, with each agent incurring two links,

or an infinitesimal fraction of agents move after the first manager. In the first case, gcp incurs

a higher total cost than gcc due to higher link costs. In the second case, gcp again incurs a

higher total cost due to higher incentive costs, because in the efficient sequence of gcp, each

agent before the first manager is monitored by only an infinitesimal fraction of agents, while

his counterpart in π∗(gcc) is monitored by a 1/|T | fraction of agents. In summary, gcc incurs

a lower total cost than gcp when |T | is fixed and f̂ is sufficiently large.
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6.2 Ranking networks by stability

We now examine a second measure for ranking networks, which identifies the largest possible

fraction of links that can be severed from network g, while keeping the transitive reduction

of g intact. For any connected network g, the stability measure S(g) is given by

S(g) :=
|g|− |g̃(π∗; g)|

|g| ,

where π∗(g) is an optimal sequence for g, and g̃(π∗; g) is the transitive reduction under π∗

and g. Note that S(g) ∈ [0, 1) for any g, and that the higher S(g) is, the more stable g is, as

it accommodates a larger fraction of broken links. Our last proposition ranks the networks

studied in Section 5 in terms of stability.

Proposition 12. Let G = {gdcp, gcp, gcc, gcs, ghc, ghs}. Then, we have

(i) S(gdcp) > S(g) for all g ∈ G, g ∕= gdcp, while S(ghs) = 0 < S(g) for all g ∈ G, g ∕= ghs;

(ii) S(gcc) > max{S(gcs), S(ghc)}, and S(gcp) > S(gcs);

(iii) S(gcp) > S(gcc) > S(gcs) > S(ghc) when f̂ is fixed and |T | is sufficiently large, while

S(gcs) < S(gcp) < S(ghc) < S(gcc) when |T | is fixed and f̂ is sufficiently large.

Proposition 12 indicates that the stability ranking among these networks aligns closely

with their cost ranking. Statements (i) and (ii) mean that a denser network g enhances both

cost efficiency and stability compared to a sparser network g′. That is, g not only allows the

principal to implement a sequence with a lower total cost, but also contains more idle links

outside the corresponding transitive reduction for higher stability. Statement (iii) resembles

Proposition 11 (iii) but follows from a different dynamic pattern as the organization grows

via |T | → ∞ and via f̂ → ∞, respectively. To illustrate, we compare gcp and gcc, both have

in total |T |(|T |− 1)/2 links between managers. When f̂ is fixed and |T | → ∞, the number

of links between a manager and a subordinate in gcp is of order |T |2 and linear in f̂ , while

the number of links between a manager and a subordinate and between subordinates is of

order f̂ 2 and linear in |T |. Meanwhile, both the transitive reductions of gcp and gcc are linear

in both |T | and f̂ . Thus, the relative density between gcp and gcc plays a major role in their

stability comparison, and gcp is more stable when |T | → ∞ but less stable when f̂ → ∞. A

similar argument applies to the comparison between gcs and ghc.

Type-specific stability measure. Besides overall stability of a network, the above stability

measure also allows for evaluating the stability of a certain type of links. Consider a network
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representing a flat organization, g ∈ {gdcp, gcp, gcc, gcs}. We may define a series of measures,

Smm(g), Sms(g) and Sss(g) based on the type of link, where m stands for manager and s for

subordinate; thus, the subscript mm refers to link between two managers, ms refers to link

between a manager and a subordinate, and ss refers to link between two subordinates. The

measure for each type of link is then calculated, analogous to the overall stability measure,

by the largest possible fraction of such links that can be severed to preserve the network’s

transitive reduction. We list these measures in Table 2.

Network\Measure Smm(g) Sms(g) Sss(g)

Connected stars
|T |−2
|T | 0 ∅

Connected cliques
|T |−2
|T | ∈ ( f̂−2

f̂
, f̂−1

f̂
) ∈ ( f̂−2

f̂
, f̂−2

f̂
+ 2

f̂(f̂−1)
)

Core-periphery 1 ∈ ( |T |−2
|T | , |T |−1

|T | ) ∅
Dense core-periphery 1 (f̂−1)|T |2+(|T |−1)2

f̂ |T |2
f̂−2

f̂

Table 2: Type-specific stability measures for flat networks.

Similarly, for a network representing a hierarchical organization, g ∈ {ghc, ghs}, we may

consider type-specific measures Stm(g), Sms(g) and Sss(g). The subscript tm refers to link

between the top manager and a team manager. We list these measures in Table 3.

Network\Measure Stm(g) Sms(g) Sss(g)

Hierarchical stars 0 0 ∅
Hierarchical cliques 0 f̂−1

f̂

f̂−2

f̂

Table 3: Type-specific stability measures for hierarchical networks.

The above findings give rise to several interesting patterns. Whenever a subgraph of the

network displays a star structure, such as within a team in gcs or between the top manager

and team managers in a hierarchical network, the relevant links tend to be the least stable.

This instability arises because each link is essential for the transitive reduction. Conversely,

in clique structures like those within a team in gcc or ghc, the links are relatively stable, as

most of them remain inactive in the transitive reduction. As an extreme case, full stability

occurs for links between managers in gdcp or gcp, where none of such links is essential. This

reveals the exclusive role of each manager in these networks, that is, to always serve as the

intermediaries between two groups of subordinates. Moreover, since each subordinate is only

directly linked to at most two managers in the transitive reduction of these networks, links

between a manager and a subordinate are highly stable as well.
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7 Conclusion

In this paper, we proposed a tractable framework to study an incentive design problem in

team(s) where members have access to private internal information about each other’s effort

level. The feasible information architecture is described by an exogenous network, and the

principal may exploit this architecture to minimize total rewards needed by endogenously

determining the work sequence. Our results highlight two important leverages for the prin-

cipal to reduce incentive cost: improving internal transparency of the action by every agent,

and balancing internal transparency according to its diminishing marginal benefit. The opti-

mal sequence exhibits distinct properties according to the network topology, e.g., monotone

patterns in non-divisional networks and non-monotone patterns in divisional networks. We

also establish explicit conditions under which the principal prefers global connections across

teams, or local connections within teams.

Internal information in organizations remains an intriguing and promising topic in both

theoretical and empirical economics, and related fields such as operations management and

organization science. Besides hidden action as studied in this paper, the issue of internal

transparency also interacts with other important economic forces about agents’ private types,

knowledge, evolution and updating, and so forth. For example, consider a scenario where

hidden information and hidden action coexist: The agents in a team may face common

uncertainty (a state of nature) about the project’s success likelihood mapping, while each of

them receives some private informative signal about the state. In this case, the observation

of a peer’s effort, or lack of effort, reveals information about the peer’s signal and thus the

state. As a perceivable contrast to our results in this paper, the principal would sometimes

implement simultaneous moves, to avoid domino effects of low efforts caused by a possible

unfavorable signal. We expect richer further studies to be conducted, with our work as part

of the groundwork, on revealing relations between the nature of internal information and the

optimal incentive design in a more general and flexible strategic environment.
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A Appendix

A.1 Proofs

Proof of Lemma 1

Proof. Note that given the network g and sequence π, the set Mi is well-defined for each i.

Thus, the proof follows directly from the proof of Winter (2010, Proposition 4).

Proof of Lemma 2

Proof. Suppose by contradiction π∗
i = π∗

j . Consider a new sequence π′ which only differs

in that j moves immediately after i and before all the agents who move after i in π∗; thus,

π′
j > π∗

j and π′
k = π∗

k for any agent k ∕= j. It follows directly that N∗
j ⊂ N ′

j and M ′
j = M∗

j .

Consider an agent k ∕= j. Clearly, if π∗
k > π∗

j , then M ′
k = M∗

k . If π
∗
k ≤ π∗

j , then we partition

M∗
k into two groups: M∗

k\j and M∗
k\M∗

k\j, where M
∗
k\j is the set of agents who will remain in

M∗
k if all j’s links are eliminated and the agents move following π∗. Pick any agent l ∈ M∗

k .

If l ∈ M∗
k\j, then clearly he will remain in M ′

k. If l ∈ M∗
k\M∗

k\j, it must be that l ∈ M∗
j .

Since N∗
j ⊂ N ′

j and M ′
j = M∗

j , l will still remain in M ′
k, and thus, M∗

k ⊆ M ′
k. In summary,

for any agent k ∈ I, M∗
k ⊆ M ′

k, then by Lemma 1, v∗k(π
′) ≤ v∗k(π

∗). Since ij ∈ g and π∗
i = π∗

j ,

M∗
i ⊂ M ′

i ; thus, v
∗
i (π

′) < v∗i (π
∗). It follows that V ∗(π′) < V ∗(π∗), a contradiction.

Proof of Lemma 3

Proof. Since either i ∈ M∗
j or j ∈ M∗

i , both i’s and j’s neighbors are nonempty. There are

thus two cases to consider. First, suppose ij /∈ g, then there exists an agent l ∕= i, j such

that il, jl ∈ g and l moves between i and j. Suppose π∗
i < π∗

l < π∗
j , then j, l ∈ M∗

i . Now,

swap i and j and denote the new sequence π′. Then, i, l ∈ M ′
j. Since {k|ik ∈ g, k ∕= j} =

{k|jk ∈ g, k ∕= i}, N ′
i = N∗

j , N
′
j = N∗

i , M
′
i = M∗

j and M ′
j ∪ {j} = M∗

i ∪ {i}. Thus, for any

agent k ∕= i, j, there are three possibilities. First, i, j /∈ M∗
k . Since N ′

i = N∗
j and N ′

j = N∗
i ,

M ′
k = M∗

k ; thus, v
∗
k(π

′) = v∗k(π
∗). Second, i ∈ M∗

k , then j ∈ M∗
k as j ∈ M∗

i . Since M ′
i = M∗

j

and M ′
j ∪{j} = M∗

i ∪{i}, M ′
k = M∗

k ; thus, v
∗
k(π

′) = v∗k(π
∗). Third, j ∈ M∗

k and i /∈ M∗
k , thus

there exists an agent k′ ∈ M∗
k with ik′, jk′ ∈ g. Then by Lemma 2, we have π∗

i < π∗
k′ < π∗

j .

It follows that M∗
k\{j} = M ′

k\{i}, and thus, we have

p(I\({k} ∪M∗
k )) = p((I\({k} ∪ (M∗

k\{j}))\{j}) = p((I\({k} ∪ (M ′
k\{i}))\{j})

> p((I\({k} ∪ (M ′
k\{i}))\{i}) = p(I\({k} ∪ (M ′

k\{i}) ∪ {i})) = p(I\({k} ∪M ′
k)).

35



The inequality is because i is more important than j. Then, by Lemma 1, v∗k(π
′) < v∗k(π

∗).

Moreover, since M ′
i = M∗

j , we have

p(I\({j} ∪M∗
j )) = p((I\M∗

j )\{j}) > p((I\M∗
j )\{i}) = p(I\({i} ∪M ′

i)).

It follows from Lemma 1 that v∗i (π
′) < v∗j (π

∗). Lastly, since M ′
j ∪ {j} = M∗

i ∪ {i}, we have

v∗j (π
′) = v∗i (π

∗). Together, we have V ∗(π′) < V ∗(π∗), a contradiction. Thus, π∗
j < π∗

l < π∗
i .

Second, suppose ij ∈ g, then by Lemma 2, π∗
i ∕= π∗

j , and thus, either i ∈ N∗
j or j ∈ N∗

i .

Suppose π∗
i < π∗

j . Again, swap i and j and denote the new sequence π′. Note that we now

have N ′
i ∪ {i} = N∗

j ∪ {j}, N ′
j = N∗

i , M
′
i = M∗

j and M ′
j ∪ {j} = M∗

i ∪ {i}. Analogously, the
above argument goes through in this case, so π∗

j < π∗
i . In summary, if in π∗ either i ∈ M∗

j

or j ∈ M∗
i , then π∗

j < π∗
i . Thus, the lemma is proven.

Proof of Proposition 1

Proof. Since g is a clique network, by Lemma 2, the agents move sequentially in π∗. Also,

note that for any two agents i and j, {k|ik ∈ g, k ∕= j} = {k|jk ∈ g, k ∕= i}. It follows from
Lemma 3 that if i is more important than j, then π∗

i > π∗
j . By induction, we have that π∗

is the identity permutation. Thus, the proposition is proven.

Proof of Corollary 2

Proof. Let g1 be a clique network and g2 be an arbitrary network with the identical set of

nodes as g1. Let π
∗(g2) be the optimal sequence for g2. Consider a sequence π(g1) for g1 such

that each agent has the same order in π(g1) as in π∗(g2). By induction, one can easily show

that for each agent i, Mi(π
∗(g2)) ⊆ Mi(π(g1)). Then by Lemma 1, v∗i (π(g1)) ≤ v∗i (π

∗(g2)).

It follows that V ∗(π∗(g1)) ≤ V ∗(π(g1)) ≤ V ∗(π∗(g2)) Thus, the corollary is proven.

Proof of Lemma 5

Proof. By Corollary 1, in MB(m), the value between brackets is decreasing in m, so is the

difference between the last two terms. Moreover, the upper bound of summation n− 2−m

is decreasing in m. Together, we have that MB(m) is decreasing in m. On the other hand,

by the definition of importance, [p(I)− p(I\{n−m− 1})]−1 is increasing in m. In contrast,

by the monotonicity of p, [p(I)− p({j|j < n−m− 1})]−1 is decreasing in m. Together, we

have that MC(m) is increasing in m. Thus, the lemma is proven.
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Proof of Proposition 2

Proof. The optimal sequence π∗ follows directly from Lemmas 4 and 5. It remains to prove

the last two sentences of the proposition. First, suppose the agents are equally important to

the project, then the input of p(·) reduces to the number or working agents. As a result, we

can rewrite V ∗(m+ 1)− V ∗(m) based on (2) as

p(n− 1)− p(n− 1−m)

[p(n)− p(n− 1)][p(n)− p(n− 1−m)]
− (n− 2−m)[p(n− 2−m)− p(n− 3−m)]

[p(n)− p(n− 2−m)][p(n)− p(n− 3−m)]

Clearly, if m = 0, then V ∗(m+ 1)− V ∗(m) < 0, meaning that m∗ ≥ 1. Moreover, since p(·)
satisfies complementarity, we have that

p(n− 1)− p(n− 1−m) =
m󰁛

i=1

[p(n− i)− p(n− i− 1)] > m[p(n−m)− p(n− 1−m)].

This implies that V ∗(m+ 1)− V ∗(m) is strictly greater than

m[p(n−m)− p(n− 1−m)]

[p(n)− p(n− 1)][p(n)− p(n− 1−m)]
− (n− 2−m)[p(n− 2−m)− p(n− 3−m)]

[p(n)− p(n− 2−m)][p(n)− p(n− 3−m)]

>
m[p(n−m)− p(n− 1−m)]

[p(n)− p(n− 1)][p(n)− p(n− 1−m)]
− (n− 2−m)[p(n− 2−m)− p(n− 3−m)]

[p(n)− p(n− 1)][p(n)− p(n− 1−m)]

>
(2m+ 2− n)[p(n−m)− p(n− 1−m)]

[p(n)− p(n− 1)][p(n)− p(n− 1−m)]
,

where the first inequality is due to the monotonicity of p, and the second is again due to the

complementarity of p. It follows that if m ≥ n/2− 1, then V ∗(m+ 1)− V ∗(m) > 0. This in

turn implies that m∗ ≤ n/2− 1. In summary, we have 1 ≤ m∗ < n/2.

Finally, suppose [p(I)− p(I\{n})] ≥ (n − 1) [p(I)− p(I\{n− 1})]; that is, the center is

sufficiently more important than any other agent. Then, by direct calculation, we have

V ∗(1)− V ∗(0) >
1

p(I)− p(I\{n− 1}) −
n−2󰁛

i=1

1

p(I)− p({j|j < n}\{i}) −
1

p(I)− p({j|j < n})

>
1

p(I)− p(I\{n− 1}) −
n− 1

p(I)− p(I\{n}) ≥ 0.

The first inequality follows from eliminating the positive term between brackets in (2), the

second follows from the monotonicity of p, and the last is by the above assumption. It thus

follows from Lemma 5 that m∗ = 0. Thus, the proposition is proven.
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Proof of Proposition 3

Proof. Since each manager is connected to all the other agents, by Lemma 2, in π∗(gdcp), the

managers move sequentially, and a manager and a subordinate cannot move simultaneously.

Thus, the |T | managers divide π∗(gdcp) into |T |+1 “boxes”; each box can have none or some

subordinates. Moreover, since two subordinates are directly linked only in the same team,

if some box has multiple subordinates, then they must be from the same team. Suppose by

contradiction there exist more than two adjacent managers in π∗(gdcp), then due to the line

structure of π∗(gdcp), at least one manager is not adjacent to any subordinate in π∗(gdcp). It

follows that there are at most |T |− 1 boxes that have subordinates. However, the previous

argument implies that to allocate the |T | teams of subordinates, we need at least |T | boxes,
a contradiction. Thus, the proposition is proven.

Proof of Proposition 4

Proof. By a similar argument as in proving Proposition 3, the |T | managers divide π∗(gcp)

into |T |+ 1 boxes; each box can have none or some subordinates. Suppose by contradiction

there exist two adjacent managers lt and lt′ in π∗(gcp), with lt moving before lt′ , then there

are at most |T | boxes that have subordinates. Since there are at least 2|T | subordinates, at
least one box has multiple subordinates; choose the box that is closest to lt and lt′ , so that

each box in between has at most one subordinate. If this box is before lt and lt′ , then move

one of the subordinates in the box, denoted i, to between lt and lt′ ; denote this sequence π
′.

Also, denote the manager who moves immediately after i in π∗(gcp) lt′′ . Note that in π∗(gcp),

i and all agents from lt′′ to lt form a line, whereas in π′, i moves from the front to the end of

the line. It is easy to see that the total rewards to these agents are the same between π∗(gcp)

and π′. In addition, for any subordinate j ∕= i who moves immediately before lt′′ in π∗(gcp),

|M ′
j| = |M∗

j | + 1, and for any other agent k, |M ′
k| = |M∗

k |. Thus, it follows from Lemma 1

that V ∗(π′) < V ∗(π∗(gcp)), a contradiction. If this box is after lt and lt′ , then again move

a subordinate i in the box to between lt and lt′ ; denote this sequence π′. Also, denote the

manager who moves immediately before i in π∗(gcp) lt′′ . Note that in π∗(gcp), all agents from

lt to lt′′ together with i form a line. It is easy to show that the net change in transparency

from π∗(gcp) to π′ is as if the transparency of i’s action increased from |M∗
i | to |M∗

lt′′
|, while

the transparency of any other action had not changed. It follows that V ∗(π′) < V ∗(π∗(gcp)),

a contradiction. In summary, any two managers cannot be adjacent in π∗(gcp). Then, by an

analogous argument, we can easily show that any manager cannot move either the first or

the last in the entire sequence under π∗(gcp).
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The above argument implies that managers and subordinates alternate in π∗(gcp). Then,

it remains to show that the number of subordinates between managers, sq, is nonincreasing

in q. Suppose not, then there is a manager lt moving immediately after st subordinates and

immediately before s′t subordinates, such that s′t ≥ st + 1. Consider a new sequence π′ such

that one of the s′t subordinates, denoted i, moves immediately before lt, without changing

any other relative order among agents. Thus, we have |M ′
i | = |M∗

i |+s′t. Moreover, for lt and

each of the st subordinates j, we have |M ′
lt
| = |M∗

lt
|−1 and |M ′

j| = |M∗
j |−1, and for any other

agent k, we have |M ′
k| = |M∗

k |. By Lemma 1, v∗i (π
′)−v∗i (π

∗) = [p(n)−p(n−1−|M∗
i |−s′t)]

−1−
[p(n)−p(n−1−|M∗

i |)]−1, v∗lt(π
′)−v∗lt(π

∗) = [p(n)−p(n−|M∗
lt
|)]−1−[p(n)−p(n−1−|M∗

lt
|)]−1,

and v∗j (π
′)− v∗j (π

∗) = [p(n)− p(n− |M∗
j |)]−1 − [p(n)− p(n− 1− |M∗

j |)]−1 for each j. Note

that |M∗
lt
| < |M∗

j |; thus, by Corollary 1, v∗lt(π
′)− v∗lt(π

∗) > v∗j (π
′)− v∗j (π

∗). Then, by direct

calculation and rearranging, the change in total rewards is given by

V ∗(π′)− V ∗(π∗) = − p(n− 1− |M∗
i |)− p(n− 1− |M∗

i |− s′t)

[p(n)− p(n− 1− |M∗
i |)][p(n)− p(n− 1− |M∗

i |− s′t)]

+
p(n− |M∗

lt
|)− p(n− 1− |M∗

lt
|)

[p(n)− p(n− |M∗
lt
|)][p(n)− p(n− 1− |M∗

lt
|)]

+
st[p(n− |M∗

j |)− p(n− 1− |M∗
j |)]

[p(n)− p(n− |M∗
j |)][p(n)− p(n− 1− |M∗

j |)]

< − s′t[p(n− |M∗
i |− s′t)− p(n− 1− |M∗

i |− s′t)]

[p(n)− p(n− 1− |M∗
i |)][p(n)− p(n− 1− |M∗

i |− s′t)]

+
(st + 1)[p(n− |M∗

lt
|)− p(n− 1− |M∗

lt
|)

[p(n)− p(n− |M∗
lt
|)][p(n)− p(n− 1− |M∗

lt
|)]

<
(st + 1− s′t)[p(n− |M∗

lt
|)− p(n− 1− |M∗

lt
|)

[p(n)− p(n− |M∗
lt
|)][p(n)− p(n− 1− |M∗

lt
|)] ≤ 0.

The first inequality is because by complementarity, p(n− |M∗
i |− r)− p(n− 1− |M∗

i |− r) >

p(n− |M∗
i |− s′t)− p(n− 1− |M∗

i |− s′t) for any positive integer r < s′t, and v∗lt(π
′)− v∗lt(π

∗) >

v∗j (π
′)− v∗j (π

∗). The second inequality is due to monotonicity, and that |M∗
lt
| = |M∗

i |+ s′t, as

managers and subordinates alternate in π∗. The last inequality is because s′t ≥ st + 1. This

leads to a contradiction. Thus, the proposition is proven.

Proof of Lemma 6

Proof. Statements (i), (iii) and (iv) follow simply from the argument in the text. It remains

to prove statement (ii). Suppose in π∗(gcc) there are two type-II teams t and t′, and t moves

before t′. Let m∗
t and m∗

t′ be the numbers of successors in t and t′, respectively. Suppose by
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contradictionm∗
t ≤ m∗

t′ , then consider a new sequence π′ in whichm′
t = m∗

t−1, m′
t′ = m∗

t′+1,

and in each team agents form a line, without changing anything else. Let i be the immediate

successor of lt within t in π∗(gcc), and j be the immediate successor of lt′ within t′ in π′. It is

easy to show that the net change in action transparency between π∗(gcc) and π′ within t is as

if i’s transparency increased from |M∗
i | to |M ′

lt
|, and that within t′ is as if lt′ ’s transparency

decreased from |M∗
lt′
| to |M ′

j|. In addition, the actions of all the managers and predecessors

between lt and lt′ are more transparent in π′ since m′
t′ = m∗

t′ + 1, while the transparency of

any other action remains the same since m′
t +m′

t′ = m∗
t +m∗

t′ . Thus, it suffices to show that

the decrease in rewards for t exceeds the increase in rewards for t′. By Lemma 1, the former

value is given by [p(n)− p(n− 1− |M∗
i |)]−1− [p(n)− p(n− 1− |M ′

lt
|)]−1, and the latter value

is given by [p(n)− p(n− 1− |M ′
j|)]−1− [p(n)− p(n− 1− |M∗

lt′
|)]−1. Note that |M∗

i | = m∗
t − 1

and |M ′
j| = m∗

t′ ; thus, |M∗
i | < |M ′

j| as m∗
t ≤ m∗

t′ . Note too that |M ′
lt
| > |M∗

lt′
| since t moves

before t′ and m′
t +m′

t′ = m∗
t +m∗

t′ . It follows from the monotonicity of p that the decrease

in rewards for t exceeds the increase in rewards for t′, a contradiction. Thus, m∗
t > m∗

t′ .

Then, fix the above t and t′. Suppose by contradiction there are fewer predecessors in t

than in t′, i.e., ft −m∗
t ≤ ft′ −m∗

t′ , then switch the position of t and t′, keeping the relative

order among agents within each team; denote the new sequence π′. Let i be any predecessor

in t, and j be the predecessor in t′, who has the same distance to own manager as i. Since

m∗
t > m∗

t′ , |M ′
i | > |M∗

j | and |M ′
j| = |M∗

i |. Thus, the total rewards to i and j are lower in π′

than in π∗(gcc). Note that the actions of all the managers and predecessors between t and t′

are more transparent in π′ as m∗
t > m∗

t′ , so is the action of any remaining predecessor in t′.

Note too that for any other agent k, |M ′
k| = |M∗

k |. Together, we have V ∗(π′) < V ∗(π∗(gcc)),

a contradiction. Thus, statement (ii) and therefore the proposition are proven.

Proof of Proposition 5

Proof. It remains to prove the last two sentences of the proposition. First, suppose for any

two teams t and t′, 1 + ft ≤ 2(1 + ft′). Choose two arbitrary teams t and t′ under π∗(gcc),

such that t moves before t′. Suppose by contradiction t is a type-II team and t′ is a type-I

team. Let mt be the number of successors in t. If ft′ ≥ mt, then consider a new sequence π′

such that t becomes a type-I team, and t′ has now mt′ = mt successors and thus ft′ −mt′ ≥ 0

predecessors, without changing anything else. It is easy to see that such a change essentially

moves mt successors from t to t′, and mt predecessors from t′ to t. Since t moves before t′,

such a change clearly improves transparency; thus, V ∗(π′) < V ∗(π∗(gcc)), a contradiction. If

ft′ < mt, then ft′ ≥ ft −mt since 1+ ft ≤ 2(1+ ft′). Switch the position of t and t′, keeping
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the relative order among agents within each team; denote the new sequence π′. By the same

argument as in the last paragraph in the proof of Lemma 6, we have V ∗(π′) < V ∗(π∗(gcc)),

a contradiction. In summary, a type-II team must move after any type-I team, and before

any type-III team. In particular, suppose team size is identical across teams, then there can

be at most one type-II team in π∗(gcc). Suppose by contradiction there are multiple type-II

teams, then by the above, there are two adjacent type-II teams. But, by Lemma 6, we have

that both the numbers of predecessors and successors in the earlier type-II team are strictly

less than those of the later type-II team. This contradicts that each team has the same size.

Thus, the proposition is proven.

Proof of Corollary 3

Proof. Consider the algorithm in the corollary. Suppose step 2 now reaches team t′, such

that there are mt′ successors in t′. There are two cases. First, if mt′ < ft′ , then MB(
󰁓

mt)

equals the reduction in rewards for all agents in teams before t′. It follows from Corollary 1

that MB(
󰁓

mt) decreases in mt′ for fixed t′ and mt′ < ft′ . On the other hand, MC(
󰁓

mt)

equals the increase in rewards for agents in t′, as if the manager lt′ ’s action could be learned

by only mt′ , instead of |Mlt′ |, agents. Thus, by Lemma 1, we have

MC(
󰁛

mt) =
1

p(n)− p(n− 1−mt′)
− 1

p(n)− p(n− 1− |Mlt′ |)
.

If t′ is the last team in the sequence, then |Mlt′ | = mt′ , and thus, MC(
󰁓

mt) = 0; otherwise,

|Mlt′ |−mt′ is a positive constant given that mt′ < ft′ , which equals the number of agents in

all teams after t′. By Corollary 1, MC(
󰁓

mt) decreases in mt′ for fixed t′ and mt′ < ft′ .

Second, if mt′ = ft′ , then t′ is not the first team in the sequence, since in π∗(gcc) the first

team is type-I. Let t′′ be the team immediately before t′. In this case, MB(
󰁓

mt) equals the

reduction in rewards for all agents in teams before t′′, indicating that MB(
󰁓

mt) decreases

across teams. Combining the above, we have that MB(
󰁓

mt) always decreases in
󰁓

mt. In

contrast, MC(
󰁓

mt) equals the increase in rewards for agents in t′′, as if the manager lt′′ ’s

action could be learned by 0, instead of |Mlt′′ |, agents. Since mt′ ≥ 0 and |Mlt′′ | > |Mlt′ | for
any

󰁓
mt, by the above equation, MC(

󰁓
mt) increases in

󰁓
mt across teams, but decreases

in
󰁓

mt within a team. Moreover, for any mt′ = mt′′ < ft′ = ft′′ , the increase in rewards for

t′ is lower than that for t′′, as |Mlt′′ | > |Mlt′ |. This implies that MB(
󰁓

mt) and MC(
󰁓

mt)

can intersect in at most one team; before reaching that team, MB(
󰁓

mt) > MC(
󰁓

mt) for

all
󰁓

mt, and afterward, the opposite is true. Therefore, the algorithm is valid.
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Proof of Proposition 6

Proof. We first show that in π∗(gcs), any predecessor i must move before any successor j.

We only need to consider when i and j are from two different teams t and t′, respectively.

Suppose by contradiction t moves after t′, then make i a successor and j a predecessor; let π′

denote the new sequence. Consider an arbitrary agent k ∕= i, j. There are three possibilities.

If i /∈ M∗
k and j ∈ M∗

k , then |M ′
k| = |M∗

k |. If i, j /∈ M∗
k ∪M ′

k, then |M ′
k| = |M∗

k |. If i, j /∈ M∗
k ,

i ∈ M ′
k, and j /∈ M ′

k, then |M ′
k| > |M∗

k |. It follows from Lemma 1 that v∗k(π
′) ≤ v∗k(π

∗(gcs)),

with strict inequality in some cases. Moreover, note that |M ′
i | = |M∗

j | = 0, and |M∗
i | < |M ′

j|
since t moves after t′. Thus, v∗i (π

′)+v∗j (π
′) < v∗i (π

∗(gcs))+v∗j (π
∗(gcs)). In summary, we have

that V ∗(π′) < V ∗(π∗(gcs)), a contradiction. This implies that in π∗(gcs), there is at most one

type-II team, which moves after all type-I teams if they exist, and before all type-III teams

if they exist. If a type-II team does not exist, then π∗(gcs) is such that a set of type-I teams

is succeeded by a set of type-III teams. Moreover, similar to a single star, it is easy to show

that in π∗(gcs), the subordinates cannot be all predecessors or all successors. Lastly, similar

to a connected-cliques network, it is easy to show that in π∗(gcs), type-I (type-III) teams are

organized in descending (ascending) order of size. Thus, the proposition is proven.

Proof of Corollary 4

Proof. Consider the algorithm in the corollary. From Corollary 1, we have that MB(
󰁓

mt)

is decreasing in
󰁓

mt. On the other hand, MC(
󰁓

mt) is given by the increase in reward for

the new successor who was initially a predecessor. Since a successor’s action is unobservable,

and the algorithm proceeds backward, by Lemma 1, MC(
󰁓

mt) is increasing in
󰁓

mt. Thus,

the algorithm is valid to completely characterize π∗(gcs).

Proof of Proposition 7

Proof. Suppose the managers are ordered according to π∗(gcs), and consider the algorithm

in Corollary 4. Fix
󰁓

mt <
󰁓

ft, let t be the last team in the sequence such that mt < ft.

Note that any team before t is type-I, and any team after t is type-III. Thus, for any agent

i ∕= lt, either i ∈ Mlt or lt ∈ Mi. Then, reconfigure gcs hypothetically into a star network in

which lt is the center and i is lt’s predecessor (successor) if lt ∈ Mi (i ∈ Mlt). Note too that if

in gcs, lt ∈ Mi, then for fixed |Mlt |, i’s action is (weakly) more transparent in gcs than in the

corresponding star. By Corollary 1, the marginal reduction in reward for i is (weakly) lower

in gcs than in the star, as i’s action becomes more transparent. It follows that MB(
󰁓

mt)
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in gcs is lower than MB(m) in the star if
󰁓

mt = m, since |Mlt | ≥
󰁓

mt in gcs. In contrast,

for fixed |Mlt |, the increase in reward for the new successor is the same between gcs and the

star, since in both networks, the transparency of his action decreases from |Mlt |+ 1 to 0. It

follows that MC(
󰁓

mt) in gcs is higher than MC(m) in the star if
󰁓

mt = m. In summary,

we have that in π∗(gcs), the total number of successors
󰁓

m∗
t is lower than the total number

of successors m∗ in the optimal sequence of the star. It suffices to show that m∗ is bounded

above by some number of order
√
n. From Section 4.2, MB(m)−MC(m) is given by

n−m− 2

p(n)− p(n−m− 2)
− n−m− 2

p(n)− p(n−m− 3)
+

1

p(n)− p(n−m− 1)
− 1

p(n)− p(n−m− 2)

−
󰀗

1

p(n)− p(n− 1)
− 1

p(n)− p(n−m− 2)

󰀘

<
(n−m− 1)[p(n−m− 1)− p(n−m− 2)]

[p(n)− p(n−m− 1)][p(n)− p(n−m− 2)]
− p(n− 1)− p(n−m− 2)

[p(n)− p(n− 1)][p(n)− p(n−m− 2)]

<
(n−m− 1)[p(n−m− 1)− p(n−m− 2)]

[p(n)− p(n−m− 1)][p(n)− p(n−m− 2)]
− (m+ 1)[p(n−m− 1)− p(n−m− 2)]

[p(n)− p(n− 1)][p(n)− p(n−m− 2)]

∝ n−m− 1

p(n)− p(n−m− 1)
− m+ 1

p(n)− p(n− 1)
≤ n−m− 1

p(n)− p(n−m− 1)
− Km(m+ 1)

p(n)− p(n−m)

<
−Km2 − (K + 1)m+ n− 1

p(n)− p(n−m)
.

The first two inequalities are due to the monotonicity and complementarity of p. The third

inequality is due to Assumption 1, and the last one is due to the monotonicity of p. Clearly,

the larger root of −Km2 − (K + 1)m+ n− 1 is of order
√
n, as n → ∞, and for any integer

m greater than that root, the function value is negative. Thus, MB(m) −MC(m) < 0 for

m of higher order than
√
n. By (3), m∗ is bounded above by some integer of order

√
n.

Then, we turn to a connected-cliques network gcc. Let t be the last team in π∗(gcc) such

that any team before t, if it exists, is a type-I team. Let m =
󰁓

m∗
t be the total number of

successors in π∗(gcc). In Section 5.3, we showed that MB(
󰁓

m∗
t ) is given by the reduction

in rewards for all the managers and predecessors in teams before t, and MC(
󰁓

m∗
t ) equals

the increase in rewards for t, as if the transparency of lt’s action decreased from |M∗
lt
| to m∗

t .

Similarly, reconfigure gcc into a star network in which lt is the center, all the agents in teams

before t are the predecessors of lt, and all the other agents are the successors of lt. Note that

in this star, the number of predecessors of lt is less than n−m− 1, and each predecessor’s

action is (weakly) less transparent than in π∗(gcc). It follows that MB(
󰁓

m∗
t ) is lower than

MB(m) in the corresponding star. On the other hand, since |M∗
lt
| ≥

󰁓
m∗

t = m, MC(
󰁓

m∗
t )

is greater than it would be if the transparency of lt’s action decreased from
󰁓

m∗
t to m∗

t . In
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summary, we have that MB(
󰁓

m∗
t )−MC(

󰁓
m∗

t ) is less than

n−m− 2

p(n)− p(n−m− 2)
− n−m− 2

p(n)− p(n−m− 3)
+

1

p(n)− p(n−m− 1)
− 1

p(n)− p(n−m− 2)

−
󰀗

1

p(n)− p(n−m∗
t )

− 1

p(n)− p(n−m− 1)

󰀘

<
(n−m− 1)[p(n−m− 1)− p(n−m− 2)]

[p(n)− p(n−m− 1)][p(n)− p(n−m− 2)]
− (m−m∗

t + 1)[p(n−m− 1)− p(n−m− 2)]

[p(n)− p(n−m∗
t )][p(n)− p(n−m− 1)]

∝ n−m− 1

p(n)− p(n−m− 2)
− m−m∗

t + 1

p(n)− p(n−m∗
t )

<
n−m− 1

p(n)− p(n−m− 2)
− m−m∗

t + 1

m∗
t [p(n)− p(n− 1)]

≤ n−m− 1

p(n)− p(n−m− 2)
− Km(m−m∗

t + 1)

m∗
t [p(n)− p(n−m)]

<
−Km2 − (K +m∗

t −Km∗
t )m+m∗

t (n− 1)

m∗
t [p(n)− p(n−m)]

.

The first inequality is again due to the monotonicity and complementarity of p. The second

inequality is due to the complementarity of p. The third inequality is due to Assumption 1,

and the last one is due to the monotonicity of p. Suppose as n → ∞, fτ is bounded for each

team τ . Since m∗
t < ft, m

∗
t is also bounded. Thus, the larger root of the numerator in the

last line above is also of order
√
n, as n → ∞. It follows that MB(m)−MC(m) < 0 for m

of higher order than
√
n. In turn, this implies that in gcc,

󰁓
m∗

t must be bounded above by

some integer of order
√
n, since otherwise, it is profitable to reduce

󰁓
mt, a contradiction.

Thus, the proposition is proven.

Proof of Proposition 8

Proof. We first show that in π∗(ghc), any team before h is type-I. Suppose there exists a

team t before h, which is not type-I, then make t a type-I team. Clearly, this will make all

actions in t more transparent, with some strictly more transparent, and any actions outside

t equally transparent, a contradiction. Next, suppose there exists a team t after h, which is

not type-III, then make t a type-III team. Clearly, this will strictly improve the transparency

of the actions of h and each agent i such that h ∈ M∗
i , and at least weakly improve that of

each action in t, without changing the transparency of any other action, a contradiction. It

follows that any team after h is type-III. Now, suppose no teams move before h, then choose

a team t after h, move it to before h and make it a type-I team. Note that h and the agents

in t form a line both before and after the adjustment. Note too that after the adjustment,

the most transparent action within the line is equally transparent as before, and any action

ranked lower in terms of transparency is now more transparent than its counterpart before
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the adjustment. Moreover, any action outside the line remains equally transparent after the

adjustment, a contradiction. Thus, there must be a team before h. Next, suppose no teams

move after h, then choose a team t before h, move it to after h and make it a type-III team.

Similarly, h and the agents in t form a line both before and after the adjustment. It is easy

to see that the total rewards within the line remains the same after the adjustment, whereas

the reward for any other agent is lower, since his action becomes more transparent after the

adjustment, a contradiction. Thus, there must be a team after h. Then, let x and y be the

numbers of agents before and after h in π∗(ghc), respectively, and let t be the smallest team

after h. If y ≤ 2ft, then clearly x > y−2ft since x > 0. Suppose x ≤ y−2ft, then move t to

before h and make it a type-I team. This change has two implications. On the one hand, the

agents in t require less rewards since their actions become more transparent. On the other

hand, those x agents require more rewards for the opposite reason. By the monotonicity of

p and Corollary 1, the least reduction in reward in t is for the manager of t, who moves from

immediately after h to immediately before h, per the above results; so the total reduction is

more than (1+ ft) times the reduction for the manager. On the other hand, by Corollary 1,

the largest increase in reward among those x agents is for a manager, since his action is the

least transparent among the x agents’ actions; so the total increase in rewards is less than x

times the increase in reward for the manager. Together, the net reduction in total rewards

due to the adjustment is greater than

(1 + ft)

󰀗
1

p(n)− p(n− 1− ft)
− 1

p(n)− p(n− 1− y + ft)

󰀘

− x

󰀗
1

p(n)− p(n− 1− y + ft)
− 1

p(n)− p(n− 2− y)

󰀘

>
(1 + ft)(y − 2ft)[p(n− y + ft)− p(n− 1− y + ft)]

[p(n)− p(n− 1− ft)][p(n)− p(n− 1− y + ft)]

− x(1 + ft)[p(n− 1− y + ft)− p(n− 2− y + ft)]

[p(n)− p(n− 1− y + ft)][p(n)− p(n− 2− y)]

>
(1 + ft)(y − 2ft − x)[p(n− y + ft)− p(n− 1− y + ft)]

[p(n)− p(n− 1− ft)][p(n)− p(n− 1− y + ft)]

≥ 0.

The first inequality follows from the complementarity of p, the second one follows from the

monotonicity and complementarity of p, and that y > ft − 1, and the last one follows from

the assumption that x ≤ y − 2ft. Therefore, the adjustment leads to a profitable deviation,

a contradiction. Thus, the proposition is proven.
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Proof of Proposition 9

Proof. First, by a similar argument as in the proof of Proposition 8, it is easy to show that

in π∗(ghs), any type-I (type-III) team must move before (after) h, and h can be neither the

first nor the last in π∗(ghs). Suppose there exist two type-II teams separated by h, then it is

clearly profitable to decrease one successor in the team before h and increase one successor

in the team after h, a contradiction. That is, all type-II teams must be either before or after

h. Suppose there exist two type-II teams, t′ and t′′, such that ft′ < ft′′ . Suppose m∗
t′ > m∗

t′′ ,

then ft′ −m∗
t′ < ft′′ −m∗

t′′ − 1. Since both t′ and t′′ are either before or after h, decreasing

a successor within t′ and increasing a successor within t′′ will have no impact on the reward

to any agent outside t′ and t′′. However, doing so reduces the total rewards to agents in t′

and t′′. To see this, let i and j be the adjusted agents in t′ and t′′, respectively. Note that

the reduction in i’s reward is (weakly) larger than the increase in j’s reward, as m∗
t′ > m∗

t′′ .

Moreover, by Corollary 1, the increase in reward for lt′ and each predecessor other than i in

t′ is (weakly) less than the decrease in reward for lt′′ and each remaining predecessor in t′′,

respectively, as m∗
t′ > m∗

t′′ . Since ft′ −m∗
t′ < ft′′ −m∗

t′′ − 1, the total increase in rewards for

all predecessors other than i in t′ is less than the total decrease in rewards for all remaining

predecessors in t′′. Together, we have that the adjustment is profitable, a contradiction. Let

x be the number of managers and predecessors before h, and y be the number of managers

and successors after h, and let t be the smallest team after h, with m∗
t successors. If y ≤ 2ft,

then x > y − 2ft since x > 0. Suppose x ≤ y − 2ft, then move t to before h and make it a

type-I team. Analogous to the proof of Proposition 8, the least reduction in reward in t is

for an agent who was initially a predecessor, as his action was the most transparent in t; the

largest increase in reward among those x agents is again for a manager. Similarly, we have

that the net reduction in total rewards due to the adjustment is greater than

(1 + ft)

󰀗
1

p(n)− p(n− 2−m∗
t )

− 1

p(n)− p(n− 2− y +m∗
t )

󰀘

− x

󰀗
1

p(n)− p(n− 1− y +m∗
t )

− 1

p(n)− p(n− 2− y)

󰀘

>
(1 + ft)(y − 2m∗

t − x)[p(n− 1− y +m∗
t )− p(n− 2− y +m∗

t )]

[p(n)− p(n− 2−m∗
t )][p(n)− p(n− 2− y +m∗

t )]
.

The inequality is due to a similar argument as in the proof of Proposition 8. Since m∗
t ≤ ft,

if x ≤ y− 2ft, then the term in the last line is nonnegative. This means that the adjustment

leads to a profitable deviation, a contradiction. Thus, the proposition is proven.
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Proof of Proposition 10

Proof. We first consider a hierarchical-cliques network. Recall the adjustment in the proof

of Proposition 8. We have shown that the net reduction in total rewards is greater than

(1 + ft)

󰀗
1

p(n)− p(n− 1− ft)
− 1

p(n)− p(n− 1− y + ft)

󰀘

− x

󰀗
1

p(n)− p(n− 1− y + ft)
− 1

p(n)− p(n− 2− y)

󰀘
, (4)

where x and y are the numbers of agents before and after h in π∗(ghc), respectively, and t is

the smallest team after h. By Proposition 8, we have that y equals the number of managers

and successors after h, and thus, x = n− 1− y. By the complementarity of p, we have

p(n)− p(n− 1− ft) =

1+ft󰁛

i=1

[p(n+ 1− i)− p(n− i)] < (1 + ft)[p(n)− p(n− 1)].

It follows that p(n− 1− ft) > p(n)− (1 + ft)[p(n)− p(n− 1)]. Similarly, we have

p(n− 1− y + ft)− p(n− y) < (ft − 1)[p(n)− p(n− 1)] and

p(n− 1− y + ft)− p(n− 2− y) < (1 + ft)[p(n)− p(n− 1)].

It follows that p(n − 1 − y + ft) < p(n − y) + (ft − 1)[p(n) − p(n − 1)]. Substituting these

results into (4), we have that (4) is greater than

(1 + ft)
p(n)− p(n− y)− 2ft[p(n)− p(n− 1)]

[p(n)− p(n− 1− ft)][p(n)− p(n− 1− y + ft)]

− (n− 1− y)
(1 + ft)[p(n)− p(n− 1)]

[p(n)− p(n− 1− y + ft)][p(n)− p(n− 2− y)]

∝ p(n)− p(n− y)− 2ft[p(n)− p(n− 1)]

p(n)− p(n− 1− ft)
− (n− 1− y)[p(n)− p(n− 1)]

p(n)− p(n− 2− y)

≥ (Ky − 2ft)[p(n)− p(n− 1)]

p(n)− p(n− 1− ft)
− (n− 1− y)[p(n)− p(n− 1)]

K(y + 2)[p(n)− p(n− 1)]
(5)

The inequality is due to Assumption 1. If Ky > 2ft, then (5) is greater than

(Ky − 2ft)[p(n)− p(n− 1)]

(1 + ft)[p(n)− p(n− 1)]
− (n− 1− y)[p(n)− p(n− 1)]

K(y + 2)[p(n)− p(n− 1)]

∝ K2y2 + (2K2 − 2Kft + 1 + ft)y − 4Kft − (1 + ft)(n− 1).
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This is because p(n)− p(n− 1− ft) < (1+ ft)[p(n)− p(n− 1)]. Since ft is bounded by some

constant, the larger root of the last line above is of order
√
n, as n → ∞. Thus, for any y of

higher order, (5) and thus (4) is strictly positive, meaning that the adjustment is profitable,

a contradiction. If Ky ≤ 2ft, then y is bounded by a constant. Together, we have that y is

bounded by some number of order
√
n, as n → ∞.

Then, we turn to a hierarchical-stars network, and recall the adjustment in the proof of

Proposition 9. We have shown that the net reduction in total rewards is greater than

(1 + ft)

󰀗
1

p(n)− p(n− 2−m∗
t )

− 1

p(n)− p(n− 2− y +m∗
t )

󰀘

− x

󰀗
1

p(n)− p(n− 1− y +m∗
t )

− 1

p(n)− p(n− 2− y)

󰀘
, (6)

where x is the number of managers and predecessors before h, and y is that of managers and

successors after h, and t is the smallest team after h, with m∗
t successors. By Proposition 9,

we have x ≤ n− 1− y and m∗
t ≥ 1. Then, by the monotonicity of p, (6) is greater than

(1 + ft)
p(n− 2−m∗

t )− p(n− 1− y +m∗
t )

[p(n)− p(n− 2−m∗
t )][p(n)− p(n− 1− y +m∗

t )]

− (n− 1− y)
p(n− 1− y +m∗

t )− p(n− 2− y)

[p(n)− p(n− 1− y +m∗
t )][p(n)− p(n− 2− y)]

> (1 + ft)
[Ky − (1 + 2m∗

t )][p(n)− p(n− 1)]

[p(n)− p(n− 2−m∗
t )][p(n)− p(n− 1− y +m∗

t )]

− (n− 1− y)
(1 +m∗

t )[p(n)− p(n− 1)]

[p(n)− p(n− 1− y +m∗
t )][p(n)− p(n− 2− y)]

∝ (1 + ft)[Ky − (1 + 2m∗
t )]

p(n)− p(n− 2−m∗
t )

− (1 +m∗
t )(n− 1− y)

p(n)− p(n− 2− y)

≥ (1 + ft)[Ky − (1 + 2m∗
t )]

p(n)− p(n− 2−m∗
t )

− (1 +m∗
t )(n− 1− y)

K(y + 2)[p(n)− p(n− 1)]

≥ (1 + ft)[Ky − (1 + 2m∗
t )]

p(n)− p(n− 2−m∗
t )

− (1 + ft)(n− 1− y)

K(y + 2)[p(n)− p(n− 1)]

∝ Ky − (1 + 2m∗
t )

p(n)− p(n− 2−m∗
t )

− n− 1− y

K(y + 2)[p(n)− p(n− 1)]
.

The first inequality follows from a similar argument as in hierarchical-cliques networks. The

second inequality is due to Assumption 1, and the last one is because m∗
t ≤ ft. Then, by an

analogous argument as in the above, we can show that (6) is strictly positive if y is of higher

order than
√
n, as n → ∞, leading to a contradiction. Thus, the proposition is proven.
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Proof of Proposition 11

Proof. We first prove statements (i) and (ii). Suppose c is sufficiently small such that g̃ is

connected for each g ∈ G. Proposition 3 indicates that π∗(gdcp) yields the most transparent

and minimally connected monitoring network; thus, it is easy to see that C(gdcp) < C(g) for

all g ∈ G, g ∕= gdcp. Also, Propositions 5 and 6 indicate that both π∗(gcc) and π∗(gcs) yield

minimally connected monitoring networks for gcc and gcs, respectively. But, the monitoring

network of gcc is clearly more transparent than that of gcs. It follows that C(gcc) < C(gcs).

Regarding gcp and gcs, note that for any minimally connected monitoring network of gcs, gcp

can yield the same minimally connected monitoring network, except that one subordinate is

positioned between two managers (see Figure 8), leading to more internal information. This

implies that C(gcp) < C(gcs). Now, consider gcc and ghc. Proposition 8 indicates that π∗(ghc)

yields a minimally connected monitoring network for ghc.
7 Note that under both π∗(gcc) and

π∗(ghc), agents form a line in each team. However, the managers form a line in π∗(gcc), but

are centering around the top manager in π∗(ghc). It is easy to see that π∗(gcc) leads to more

internal information than π∗(ghc); thus, C(gcc) < C(ghc). Similarly, we have C(ghc) < C(ghs)

and C(gcs) < C(ghs). Together, we have that C(ghs) > C(g) for all g ∈ G, g ∕= ghs.

Figure 8: A minimally connected monitoring network of gcs (top) and that of gcp (bottom).

Then, we turn to statement (iii). First, fix f̂ and let |T | → ∞. Let V ∗
cp and V ∗

cc denote

the minimized total rewards under the efficient sequences of gcp and gcc, respectively. Since

π∗(gcc) yields a minimally connected monitoring network, it is indeed an efficient sequence

of gcc. Since ft ≡ f̂ , by Corollary 3, π∗(gcc) can be characterized by a tuple, (T cc,m
∗
t∗ , T cc),

where m∗
t∗ is the number of successors in team t∗ characterized by Corollary 3, and T cc (T cc)

is the number of type-I teams (type-III teams) before (after) team t∗; clearly, these numbers

depend on |T |. The lemma below shows that T cc is of lower order of |T |, as |T | → ∞.

7Given our assumption in footnote 6, for both ghc and ghc, a minimally connected monitoring network
has n links, whereas that of any other g ∈ G has n− 1 links.
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Lemma 7. Given f̂ , lim|T |→∞ T cc/|T | = 0.

Proof. Note that along π∗(gcc), it is successively T cc type-I teams, team t∗, and T cc type-III

teams. Now, construct a similar sequence π′, such that the managers form a line, and there

is a team t′ in an interior stage such that any team before t′ is a type-I team and any team

after t′ is a type-III team. Let |M ′
lt′
|(n) be the action transparency of the manager of t′, lt′ ,

when the population is n. Given f̂ , n → ∞ as |T | → ∞. Note that we can always construct

such π′ that as n → ∞, |M ′
lt′
|(n) → ∞ and |M ′

lt′
|(n)/n → 0. Thus, given our construction

of p in this section, p(|M ′
lt′
|(n)) → p(0) as n → ∞. Note too that for any agent i ∈ M ′

lt′
, his

reward is lower than [p(n)− p(n− 1)]−1, while for any agent j such that lt′ ∈ M ′
j, his reward

is lower than that of lt′ , which is [p(n)− p(n− 1− |M ′
lt′
|(n))]−1. Since π′ is not necessarily

the optimal, the average reward under π′ must be higher than under π∗(gcc). Thus,

lim sup
n→∞

V ∗
cc

n
≤ lim

n→∞

1

n

󰀥
|M ′

lt′
|(n)

p(n)− p(n− 1)
+

n− |M ′
lt′
|(n)

p(n)− p(n− 1− |M ′
lt′
|(n))

󰀦
=

1

p(n)− p(0)
.

On the other hand, note that any agent’s reward is bounded below by [p(n)− p(0)]−1; thus,

we have limn→∞ V ∗
cc/n = [p(n)−p(0)]−1. However, for fixed f̂ , any subordinate’s reward in a

type-III team is significantly higher than [p(n)−p(0)]−1. This implies that there can only be

an infinitesimal fraction of type-III teams, as |T | → ∞. That is, lim|T |→∞ T cc/|T | = 0.

Then, we have the following lemma.

Lemma 8. C(gcp) < C(gcc) when f̂ is fixed and |T | is sufficiently large.

Proof. For any sufficiently large |T |, we shall construct a sequence π′ in gcp, which yields a

minimally connected monitoring network, and leads to strictly lower total rewards than V ∗
cc.

Suppose in π∗(gcc), there exist T ′ teams with at least one successor in each team. Let n′ be

the total number of these successors; thus, n′ ≤ T ′f̂ . Then, in π′, form a line of length 2|T |
by alternating the managers and subordinates one by one, and then move all the remaining

subordinates to before the first manager, as illustrated in Figure 9.

By Lemma 7, when |T | is sufficiently large, 2|T | ≫ T ′ + n′. Since the last T ′ + n′ agents

in π′ form a line, their total rewards are strictly lower than those of the last T ′ + n′ agents

in π∗(gcc). On the other hand, among the first |T |−T ′ teams in π∗(gcc), the longest line has

a length f̂ + |T |− T ′. By Lemma 7, 2|T |− T ′ − n′ ≫ f̂ + |T |− T ′, for sufficiently large |T |.
This means that the action of each agent before the first manager in π′ is significantly more

transparent than the most transparent action in π∗(gcc). Since the remaining 2|T |− T ′ − n′
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Figure 9: An optimal sequence π∗(gcc) of gcc (top) and the constructed sequence π′ for gcp (bottom).

agents in π′ also form a line, it is easy to see that the total rewards must be lower in π′ than

in π∗(gcc). Note that both π′ and π∗(gcc) yield a minimally connected monitoring network

with n−1 links. Since π′ is not necessarily an efficient sequence of gcp, the total cost must be

lower in gcp than in gcc, i.e., C(gcp) < C(gcc), when f̂ is fixed and |T | is sufficiently large.

Since C(gcc) < C(ghc) for all n, Lemma 8 implies that C(gcp) < C(gcc) < C(ghc) when f̂

is fixed and |T | is sufficiently large.

Second, fix |T | and let f̂ → ∞. Consider an efficient sequence of gcp, denoted π̃(gcp). For

any subordinate i, he must move either before the first manager, or after the last manager,

or between two managers in π̃(gcp). Note that if i moves between two managers, then i must

be directly linked to each of the two managers. Suppose not, then i is directly linked to only

one manager, since g̃ is connected for gcp. Then, it is profitable to move i to either before the

first manager or after the last manager, thereby enhancing transparency without increasing

link costs, a contradiction. By a similar argument as Lemma 7, the number of subordinates

after the last manager in π̃(gcp) must be of lower order of n, as f̂ → ∞, since these agents’

reward equals [p(n) − p(n − 1)]−1. Similarly, as f̂ → ∞, the average reward under π∗(ghc),

V ∗
hc/n → [p(n)−p(0)]−1. Note that π∗(ghc) yields a minimally connected monitoring network

with n links; thus, C(ghc)/n → [p(n)− p(0)]−1 + c. Suppose as f̂ → ∞, the total number of

subordinates between two managers in π̃(gcp) is larger than αn for some constant α ∈ (0, 1).

Since each reward is at least [p(n)− p(0)]−1, limn→∞ C(gcp)/n ≥ [p(n)− p(0)]−1 + (1 + α)c.

Thus, C(ghc) < C(gcp). By contrast, suppose as f̂ → ∞, the total number of subordinates

between two managers in π̃(gcp) is of lower order of n. Then, given f̂ , construct a sequence

π′ in ghc, such that |T |− 1 type-I teams move before the top manager, and 1 type-III team

moves after him, as illustrated in Figure 10. Note that the agents after the top manager form

a line and account for 1/|T | of the population, as f̂ → ∞. On the other hand, in π̃(gcp), the
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Figure 10: An efficient sequence π̃(gcp) of gcp (top) and the constructed sequence π′ for ghc (bottom).

agents after the first manager account for an infinitesimal fraction of the population, with

most agents moving before the first manager, as f̂ → ∞. Note that the total rewards under

π̃(gcp) are higher than they would be if the agents after the first manager form a line, which

would be higher than the total rewards under π′, since in π′ the line after the top manager

is significantly longer. Since an efficient sequence of ghc is connected, C(ghc) must be lower

than the resulting total cost by implementing π′ and cutting the link of the last agent in π′,

which yields n− 1 links as π̃(gcp). Thus, C(ghc) < C(gcp). In summary, C(ghc) < C(gcp), as

f̂ → ∞. Since C(gcc) < C(ghc) for all n, we have that C(gcc) < C(ghc) < C(gcp) when |T | is
fixed and f̂ is sufficiently large. Thus, the proposition is proven.

Proof of Proposition 12

Proof. Statement (i) and the first part of statement (ii) are straightforward. We now show

that S(gcp) > S(gcs). By direct calculation, we have

|gcp|
2

= |T |2f̂ +
|T |(|T |− 1)

2
;

|gcs|
2

= |T |f̂ +
|T |(|T |− 1)

2
;

|g̃(π∗(gcp); gcp)|
2

∈ [|T |(f̂ + 1)− 1, 2|T |f̂);

|g̃(π∗(gcs); gcs)|
2

= |T |(f̂ + 1)− 1.
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In particular, |g̃(π∗(gcp); gcp)|/2 < 2|T |f̂ because the transitive reduction π∗(gcp) contains no

link between managers and strictly less than 2 links per subordinate.

Now, define S̃(g) := |g|/|g̃(π∗; g)|. Note that for two networks g and ĝ, S(g) > S(ĝ) if

and only if S̃(g) > S̃(ĝ). Then, we have

S̃(gcp)

S̃(gcs)
>

|T |2f̂ + |T |(|T |−1)
2

|T |f̂ + |T |(|T |−1)
2

|T |(f̂ + 1)− 1

2|T |f̂
=

(|T |f̂ + |T |−1
2

)(|T |f̂ + |T |− 1)

2|T |f̂(f̂ + |T |−1
2

)
.

Given |T | ≥ 2 and f̂ ≥ 2, we have

(|T |f̂ +
|T |− 1

2
)(|T |f̂ + |T |− 1)− 2|T |f̂(f̂ +

|T |− 1

2
)

= |T |(|T |− 2)f̂ 2 +
(|T |f̂ + |T |− 1)(|T |− 1)

2
> 0,

This implies that S(gcp) > S(gcs).

Then, we turn to statement (iii). Similarly, we have

|gcc|
2

=
f̂(f̂ − 1)

2
|T |+ |T |f̂ +

|T |(|T |− 1)

2

|ghc|
2

=
f̂(f̂ − 1)

2
|T |+ |T |

|g̃(π∗(gcc); gcc)|
2

= |T |(f̂ + 1)− 1

|g̃(π∗(ghc); ghc)|
2

= |T |(f̂ + 1).

It follows that

lim
|T |→∞

S̃(gcp)

S̃(gcc)
> lim

|T |→∞

|T |2f̂ + |T |(|T |−1)
2

f̂(f̂−1)
2

|T |+ |T |f̂ + |T |(|T |−1)
2

|T |(f̂ + 1)− 1

2|T |f̂
=

2f̂ + 1

2
> 1

lim
f̂→∞

S̃(gcp)

S̃(ghc)
≤ lim

f̂→∞

|T |2f̂ + |T |(|T |−1)
2

f̂(f̂−1)
2

|T |+ |T |
|T |(f̂ + 1)

|T |(f̂ + 1)− 1
= 0 < 1

lim
|T |→∞

S̃(gcs)

S̃(ghc)
= lim

|T |→∞

|T |f̂ + |T |(|T |−1)
2

f̂(f̂−1)
2

|T |+ |T |
|T |(f̂ + 1)

|T |(f̂ + 1)− 1
= ∞ > 1

lim
f̂→∞

S̃(gcs)

S̃(ghc)
= lim

f̂→∞

|T |f̂ + |T |(|T |−1)
2

f̂(f̂−1)
2

|T |+ |T |
|T |(f̂ + 1)

|T |(f̂ + 1)− 1
= 0 < 1.

This establishes statement (iii). Thus, the proposition is proven.
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