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Abstract

This paper studies nonlinear pricing for horizontally differentiated products that

provide signaling value to consumers, who choose how much to purchase as a signal to

the receivers. We characterize the optimal symmetric price schedules under different

market structures. Under monopoly, when the receivers observe the price schedule,

the market is partially covered, and quantity is downward distorted if there is slight

horizontal differentiation. As the degree of horizontal differentiation rises, the market

coverage rises, and the downward distortion decreases. When the degree is sufficiently

high, for a certain level of signaling intensity, the monopolistic allocation achieves the

first-best; for higher signaling intensities, quantity is upward distorted at the low end.

In contrast, when the receivers do not observe the price schedule, the market is always

partially covered, and the allocation is more dispersed than that in the observed case.

Specifically, higher types purchase more than in the observed case, with the highest

types purchasing more than the first-best, whereas lower types purchase less than in the

observed case, with more types excluded from the market. When the market structure

changes from monopoly to duopoly, market competition results in a higher market

coverage and larger quantities for both the observed and unobserved case.
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1 Introduction

Starting with the seminal work of Mussa and Rosen (1978) and Maskin and Riley (1984) on

monopolistic nonlinear pricing, there is a large literature on nonlinear pricing in competitive

settings. These models typically assume that buyers derive intrinsic value from consuming

the products. Recently, Lu (2018) studies monopolistic nonlinear pricing for products that

provide signaling values to consumers and assesses how the transparency of pricing affects

the degree of signaling and welfare. In contrast, this paper studies nonlinear pricing for

horizontally differentiated products that provide signaling value to consumers, and further

investigates how (horizontal) competition affects sellers’ pricing strategies and the degree of

signaling and welfare. The paper is also closely related to Rochet and Stole (2002) and Yang

and Ye (2008) in the sense that the only substantial difference is that the products in our

model have signaling value in addition to intrinsic value. Thus, our paper is complementary

to the three recent papers, and establishes a close connection between each other.

In this paper, we derive the optimal symmetric price schedules, under different market

structures, for horizontally differentiated products that provide signaling value to consumers

with private information. The equilibrium depends critically on whether the signal receivers

observe the sellers’ price schedules, as well as on the market structure. We first consider the

case in which a monopolist maximizes the joint profit of all products. When the receivers

observe each product’s price schedule, the (vertical) market is partially covered, and quantity

is downward distorted if there is slight horizontal differentiation. As consumers’ valuations

for the product become more horizontally differentiated, the market coverage rises, and the

downward distortion decreases. When the degree of horizontal differentiation is sufficiently

high, for some intermediate level of signaling intensity, the monopolistic allocation can in

fact achieve the first-best; for higher signaling intensities, quantity is upward distorted at

the low end. In contrast, when the receivers do not observe any product’s price schedule, the

market is always partially covered, and the allocation is more dispersed than in the observed

case. Specifically, an interval of higher types purchase more than in the observed case, with

the highest types purchasing more than the first-best, whereas the rest types purchase less

than in the observed case, with more types excluded from the market. When the market

structure changes from monopoly to duopoly, in which each seller maximizes the profit of

own product, market competition results in a higher market coverage and larger quantities

for both the observed and unobserved case.

For the purpose of exposition, we present our model in terms of Spence’s education model

(Spence 1973) with productive education. In the model, two identical schools choose their
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own tuition scheme, and a worker chooses which school to attend and how much education

to purchase to signal his privately know ability (vertical type) to competing employers. The

worker’s ability distributes uniformly over [0, 1]. Following Yang and Ye (2008), we model

horizontal differentiation by assuming that the worker incurs transportation costs to attend

school. The worker’s distance to a school (horizontal type) distributes uniformly over [0, 1
2
].

As a benchmark, we consider the case in which there is no horizontal differentiation. Then,

a symmetric Bertrand competition induces both schools to set price at the marginal cost,

and the model returns to Spence’s signaling game. In the least-cost separating equilibrium,

all types except the lowest vertical type choose more education than the first-best, as they

attempt to separate themselves from lower vertical types.

In Section 3, we consider the case in which a monopolist maximizes the joint profit of the

two schools. We start with the observed case in which employers observe each school’s tuition

scheme. In the symmetric school-optimal separating equilibrium, when there is slight hori-

zontal differentiation, the vertical market is partially covered and has two segments: in the

fully covered range, all horizontal types purchase education; in the partially covered range,

only those close to either school purchase education. Moreover, all vertical types except the

highest one purchase less education than the first-best. This result stands in contrast to that

of the Bertrand-Spence benchmark. The downward distortion results from the interaction

of three forces: market penetration, screening and signaling. Since a higher type can benefit

from his cost advantage over lower types, the monopolist has to leave information rent to

the worker to incentivize truth-telling. In the fully covered range, since the market share is

maximized, the marginal profit of education is unambiguously lower than the social surplus,

thus the monopolist under-supplies education. In the partially covered range, in contrast,

the monopolist can benefit from rent provision to gain market share. However, when there

is slight horizontal differentiation, the screening effect is dominant, leading to a downward

distortion. As the degree of horizontal differentiation rises, to maintain the market share in

the partially covered range, the monopolist provides more rent to the worker by both raising

the market coverage and offering more education to the worker.

When horizontal differentiation is sufficiently significant, the allocation depends critically

on the intensity of signaling. As is pointed out by Lu (2018), in the monopoly observed case,

signaling mitigates the screening distortion. This is because the worker’s signaling incentive

reduces his willingness to imitate lower types, and thus, the school leaves lower information

rent to the worker than when signaling is absent. When signaling intensity is relatively low,

screening outweighs signaling and market penetration, resulting in a downward distortion
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with a partially covered vertical market. When signaling intensity is at some intermediate

level—when the worker’s productivity and cost heterogeneity are equally significant—the

monopolistic allocation achieves the first-best for all types. That is, the effects of signaling

and market penetration exactly offset that of screening, thereby restoring the social optimum.

In contrast, full-efficiency can never occur when signaling is absent, because otherwise the

monopolist had to offer the worker a rent equal to the social surplus, leading to zero profit.

Again, this is because the worker extracts higher information rent when signaling is absent.

Then, for even higher signaling intensities, at the low end of the market where the monopolist

charges very low price to increase market penetration, signaling outweighs screening, leading

to over-education in this region.

Then, we turn to the unobserved case in which employers do not observe any school’s

tuition scheme. In the symmetric school-optimal separating equilibrium, the market coverage

is lower, and education levels are more dispersed than in the observed case. Specifically, an

interval of higher types choose more education than in the observed case, whereas the others

choose less education than in the observed case. As in Lu (2018), this difference is driven

by a signal jamming effect. Since employers cannot observe the actual cost of education,

they will attribute a difference in education level to worker cost heterogeneity despite that

tuition changes. Consequently, the worker’s demand for education becomes more elastic

than in the observed case. This provides the monopolist with an incentive to secretly supply

more education. Suppose that, as in Lu (2018), there is no horizontal differentiation and

thus the market contains only the fully covered range, then the vertical market is partially

covered due to screening, and education levels are uniformly higher in the unobserved case

than in the observed case. As the degree of horizontal differentiation rises, the partially

covered range emerges, and the monopolist offers lower types more education to gain market

share. However, due to incentive compatibility, doing so will provide higher types with higher

information rent. Since in the unobserved case those higher types already obtain higher rent

than in the observed case, the monopolist finds it unprofitable to offer those lower types the

same education levels as in the observed case. Therefore, at any positive degree of horizontal

differentiation, opposite to higher types, an interval of lower types obtain less education in

the unobserved case than in the observed case, meaning that the market coverage is lower in

the unobserved case. The length of such an interval is increasing in the degree of horizontal

differentiation and vanishes as the degree approaches zero.

In Section 4, we consider duopoly in which each school maximizes own profit given the

other’s tuition scheme. Again, we start with the observed case. In contrast to monopoly,
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under duopoly, market competition results in a higher market coverage, higher education

levels, and a higher equilibrium payoff to the worker. Intuitively, under duopoly, the two

schools compete with each other in the fully covered range by providing the worker with

more rent than in the monopoly case. This relaxes the incentive compatibility constraint

for lower types. Specifically, each school fears less about allocating more education to lower

types thereby providing higher types with more rent, as higher types will enjoy more rent

anyway due to market competition. Therefore, the schools increase education supply for all

participating types, and include some of those who are not served in the monopoly case.

In the unobserved case, from numerical computation, we obtain qualitatively identical

results as in the observed case. However, the intuition is a bit subtler. Suppose that both

schools retain the contract of the monopoly case, and thus, the labor market offers the same

wage schedule. Then, given the other’s tuition scheme, each school has an incentive to supply

more education for two reasons. The first reason is the competition in rent provision between

the two schools, as is suggested above. The second reason is that due to the signal jamming

effect, each school has an incentive to secretly supply more education to “fool” the market

thereby making a profitable deviation. Similarly, while higher types receive more education,

so do lower types, as the incentive compatibility constraint relaxes. Thus, education levels

are uniformly higher under duopoly than under monopoly; accordingly, the market coverage

is higher under duopoly as well.

In Section 5, we conclude our paper. All omitted proofs are presented in the Appendix.

1.1 Related Literature

This paper is most closely related to three recent papers on nonlinear pricing: Rochet and

Stole (2002), Yang and Ye (2008) and Lu (2018). Rochet and Stole (2002) studies both

monopoly and duopoly nonlinear pricing in a Hotelling model. In this paper, horizontal types

are interpreted as consumers’ outside options, thereby giving rise to random participation.

Their analysis focuses on the case in which the vertical market is always fully covered. As

such, they show that under monopoly, there is either bunching or efficient allocation at the

bottom. Under duopoly, when the market is fully covered, the equilibrium is such that both

sellers offer an efficient cost-plus-fee price schedule.1

Yang and Ye (2008) complements Rochet and Stole (2002)’s analysis by focusing on the

case in which the lowest participating type is endogenously determined. By doing so, they

investigate the effects of horizontal differentiation and competition on the market coverage

1Armstrong and Vickers (2001) has obtained a similar result.
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and quality distortion. The paper shows that under monopoly, the vertical market is always

partially covered and bunching never happens. Moreover, quantity is downward distorted

with efficiency achieved only on the top. When the market structure changes from monopoly

to duopoly, the market coverage rises, and quality distortion decreases.

In contrast to Rochet and Stole (2002) and Yang and Ye (2008), the products in our

model possess signaling value. Signaling affects the equilibrium allocation by mitigating the

screening distortion. In particular, when the degree of horizontal differentiation is sufficiently

high, for some certain level of signaling intensity, the monopolistic allocation can fully achieve

the first-best; for higher signaling intensities, there is upward distortion at the low end of

the vertical market. These results cannot be obtained in the other two papers in which

signaling is absent. Recently, Ye and Zhang (2017) studies monopolistic nonlinear pricing

with consumer entry. Different from the mechanism in our paper, they show that consumer

entry can mitigate the screening distortion too. Under certain conditions, the first-best can

also be achieved by the monopolistic allocation.

Lu (2018) studies monopolistic nonlinear pricing for products that provide signaling value

to customers and assess how the transparency of pricing affects the degree of signaling and

welfare. As in classic screening models, Lu (2018) makes two simplifying assumptions: the

consumers possess one-dimensional private information, and their participation decisions are

type-independent. In contrast, the current paper studies nonlinear pricing for horizontally

differentiated products with signaling value. Therefore, the consumers have two-dimensional

types and make type-dependent participation decisions. The results of Lu (2018) can be seen

as the limit results of the current paper with respect to the degree of horizontal differentiation.

Thus, there is no discontinuity in the results of Lu (2018) when we disturb the participation

constraint somewhat. In addition, Rayo (2013) also consider monopolistic nonlinear pricing

for signals, assuming that the seller’s price schedule is observed by the receivers. Whereas we

assume additive separability in the receivers’ action and the consumers’ type, Rayo’s adopts

a multiplicative structure, and thus, the seller’s revenue depends on whether the allocation

of signal is separating or pooling; this necessitates the use of novel screening techniques.

There are several other papers that study nonlinear pricing for both horizontally and

vertically differentiate products in competitive settings. For example, Gilbert and Matutes

(1993), Stole (1995), Verboven (1999), Villas-Boas and Schmidt-Mohr (1999), Ellison (2005),

and Armstrong and Vickers (2001). Like Rochet and Stole (2002), all these papers assume

that the vertical market is always covered, and thus, they preclude the effects of horizontal

competition on the market coverage.
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2 The Model

Players and actions. There are n schools, a worker and a competitive labor market. At

the beginning of the game, each school i chooses a tuition scheme Ti(z) : R+ → R+, where

z stands for education level and Ti(z) is the tuition at z. Then, observing all the tuition

schemes, the worker chooses at most one school to attend, and upon attendance how much

education to purchase from the school. The worker’s education choice is thus characterized

by which school he attends and how much education he chooses. Finally, the labor market

offers the worker a wage equal to his expected productivity (see below).

The worker’s productivity depends on his ability θ and education level z, irrespective

of which school he attends.2 The worker’s ability θ is a random variable, which distributes

uniformly over the unit interval: θ ∼ U [0, 1]. Let Q(z, θ) be the productivity of a worker

with ability θ and education level z. Specifically, we assume that

Q(z, θ) = γθz + z,

where γ > 0 is a parameter. Thus, the productivity function is increasing in both arguments

and is supermodular, meaning that both education and the worker’s ability are productive,

and complement each other. In addition, a worker with no education has zero productivity

irrespective of his ability. This corresponds to the fact that many jobs require a minimal

education level. For instance, a lawyer candidate must graduate from a law school, and

medical school education is prerequisite for being a licensed practitioner of medicine.

The worker incurs a transportation cost if he attends a school. Specifically, the worker is

located randomly and uniformly along a unit-length circle. The locations of all the schools

split the circle evenly. Let di be the distance between the worker and school i. If the worker

chooses to attend school i, then he incurs a transportation cost kdi, where k > 0 is the

unit transportation cost. Note that the worker’s preference depends on his ability θ and his

location that is summarized by {di}. Thus, the worker is characterized by a two-dimensional

type (θ, {di}), where the first preference parameter θ is called the worker’s vertical type and

the second parameter {di} the worker’s horizontal type, respectively, with both parameters

independent of each other. Figure 1 illustrates the locations of two schools and the worker

in a duopoly education market.

Information. The worker’s education choice is publicly observed. Whereas the distribution

of the worker’s type is common knowledge, neither the schools nor the labor market observes

2That is, the education provided by each school is equally productive. Nonetheless, the wage offered by

the labor market may still depend on which school the worker attends.
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Worker (𝜃, 𝑑1) 

School 1 

School 2 

𝑑1 

𝑑2 

Figure 1: A Duopoly Education Market.

the worker’s type. In this paper, for each market structure we consider, we study two variants

of the model: in the observed case, all the tuition schemes are observed by the labor market;

in the unobserved case, no tuition scheme is observed by the labor market. In each case,

based on the available information, the labor market announces and commits to a wage

schedule Wi(z) : R+ → R+ for each school i’s student.

Payoffs. We normalize each school’s production cost to zero. Thus, school i’s per-customer

profit equals the tuition revenue Ti. If a type-(θ, {di}) worker attends school i and chooses

education level z, then he obtains a gross utility given by

Vi(z, θ) = Wi(z)− Ti(z)− C(z, θ),

and accordingly a net utility given by

Ui(z, θ, di) = Vi(z, θ)− kdi,

where C(z, θ) is the worker’s cost of effort for education. Specifically, we assume that

C(z, θ) = z2 + (1− θ)z.

Note that C(z, θ) is increasing and strictly convex in z, and that C(0, θ) = 0 for any θ.

More importantly, the standard single-crossing property holds: Czθ(z, θ) < 0 if z > 0. This

condition captures the feature that a higher-ability worker has lower marginal effort costs

than a lower-ability worker. We also assume that the worker can obtain a zero-utility outside

option by neither attending school nor entering the labor market.
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First-best benchmark. Define S(z, θ) as the social surplus function (net from the trans-

portation cost). Then, we have

S(z, θ) = Q(z, θ)− C(z, θ) = (γ + 1)θz − z2

It follows that the first-best education level is given by zfb(θ) = (γ+1)θ
2

. Substituting zfb(θ)

into S(z, θ), we have Sfb(θ) = (γ+1)2θ2

4
.

Equilibrium. Throughout the paper, we use symmetric perfect Bayesian equilibrium as the

solution concept. Specifically, in the observed case, an equilibrium consists of each school i’s

tuition scheme T oi and conditional on any tuition scheme profile {Ti}, the worker’s education

choice zoi (θ; {Ti}) and the labor market’s wage schedule W o
i (z; {Ti}) for each i, such that

(i) For each {Ti}: (a) givenW o
i (z; {Ti}), zoi (θ; {Ti}) maximizes Ui(z, θ, di); (b)W o

i (z; {Ti}) =

E[Q(z, θ)|zoi (θ; {Ti})] such that the labor market’s posterior belief about the worker’s

ability, or simply the market belief, is updated using Bayes’ rule.

(ii) Given zoi (θ; {Ti}) and {T o−i}, T oi maximizes the school’s expected profit, i.e.,

T oi ∈ arg max
Ti

∫ 1

0

Ti(z
o
i (θ; {Ti}))dθ

subject to that T oj = T oi for any j 6= i.

In the unobserved case, the market belief is independent of the actual tuition schemes but

is conditional on conjectured schemes. We assume that the conjecture is symmetric across

schools, and in equilibrium, it is correct. In this case, an equilibrium consists of each school

i’s tuition scheme T ui and the associated wage schedule W u (more precisely, W u(z; {T ui })),
and conditional on any profile {Ti}, an education function zui (θ; {Ti}) for each i, such that

(i) GivenW u, for each {Ti}, zui (θ; {Ti}) maximizes Ui(z, θ, di); W
u = E[Q(z, θ)|zui (θ; {T u})]

such that the market belief is updated using Bayes’ rule.

(ii) Given zui (θ; {Ti}) and {T u−i}, T ui maximizes the school’s expected profit, i.e.,

T ui ∈ arg max
Ti

∫ 1

0

Ti(z
u
i (θ; {Ti}))dθ

subject to that T uj = T ui for any j 6= i.

Note that the equilibrium conditions have one important difference between the observed

and unobserved case: in the unobserved case, the market belief needs to be correct only on
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the equilibrium path, whereas in the observed case, the market belief has to be correct

following every tuition scheme profile that is chosen by the schools.

Note too that all schools are symmetric and the worker’s location distributes uniformly

along the circle. Since we consider symmetric equilibrium, following Yang and Ye (2008), we

claim without argument that the analysis for a n-school oligopoly model can be translated

into that of a duopoly model if we normalize k to k′ = 2k/n.3 Since we consider any k > 0,

it is without loss of generality to focus on the duopoly model. Thus, in the subsequent, we

consider a duopoly education market as is depicted in Figure 1. As a result, the worker’s

horizontal type can be simply characterized by di, i = 1, 2.

Equilibrium selection. Due to the flexibility of off-path belief, there possibly exist multiple

equilibria even though we consider symmetric equilibrium. Following Lu (2018), for both

the observed and unobserved case, we focus on the school-optimal separating equilibrium;

that is, the equilibrium that yields the highest payoff for the schools, provided that on the

equilibrium path, z(θ) is one-to-one if z(θ) > 0.

2.1 Direct Mechanisms

It is well known that in common agency games, it is no longer without loss of generality to

restrict attention to direct mechanisms by applying the revelation principle.4 In this regard,

following Rochet and Stole (2002), we restrict our attention to deterministic contracts.5 Note

that the worker’s gross utility, upon purchasing from school i, depends only on his vertical

type θ. Thus, it is without loss of generality to consider direct mechanisms such that the

allocation depends only on the vertical type the worker reports to a school. For brevity, in

the subsequent, we often interchange vertical type and type, provided there is no confusion.

Hence, for both the observed and unobserved case, it is without loss of generality to

adjust the timing as follows. First, each school i offers a contract 〈zi(θ), Ti(z)〉 to the worker.

Then, the labor market posts a wage schedule Wi(z) for each school i’s student based on the

3See Section 5 of Yang and Ye (2008) for greater details.
4Martimort and Stole (2002) demonstrates an example in which the revelation principle may fail when

competing principals deviate to more complicated mechanisms that incorporate off-path messages. The

reason for such failure, as indicated by McAfee (1993), is that the mechanisms offered by other competing

principals may also be the agent’s private information when making his decision. This implies that such

private information can potentially be used by competing principals in designing revelation mechanisms.
5see Rochet and Stole (2002) for a detailed discussion of restrictions due to focusing on deterministic

contracts and excluding the possibility of random contracts. In contrast, Manelli and Vincent (2006) and

Thanassoulis (2004) consider random contracts for indivisible goods in multi-dimensional screening games.
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information available: in the observed case, it observes all the contracts; in the unobserved

case, it does not observe any contract. Finally, the worker chooses at most one school to

attend, and upon attendance he reports his type to only this school. If the worker chooses

to attend school i and reports a type θ̂, then he obtains education level zi(θ̂), pays tuition

Ti(zi(θ̂)) and then receives a wage Wi(zi(θ̂)).

Worker’s problem. In both cases, given each school i’s contract 〈zi(θ), Ti(z)〉 and the

associated wage schedule Wi(z), a type-θ worker chooses some school i to attend, and upon

attendance a report θ̂i to the school to maximize his net utility:

Ui(θ̂i, θ, di) = Wi(zi(θ̂i))− T (zi(θ̂i))− C(zi(θ̂i), θ)− kdi.

The mechanism {〈zi(θ), Ti(z)〉,Wi(z)} is incentive compatible (IC) if the worker is willing

to truthfully report his type and is individually rational (IR) if the worker obtains a non-

negative utility level by attending school i. A type-θ worker’s equilibrium payoff is given by

U(θ, di) ≡ maxi Ui(θ, θ, di), and the corresponding gross utility by V (θ) ≡ Vi(θ, θ).

School’s problem. In the observed case, given the other school’s contract, each school

chooses a contract to maximize its expected profit subject to the IC and IR constraints, and

the correctness of the market belief. In the unobserved case, since the market’s inference is

independent of the schools’ choices, given the wage schedules and the other school’s contract,

each school chooses a contract to maximize its expected profit subject to only the IC and

IR constraints.

2.2 Preliminary Analysis

For both the observed and unobserved case, an allocation 〈z(θ), U(θ, di)〉 is implementable if

it is incentive compatible and individually rational. Since the worker’s net utility is separable

in z and di, an allocation 〈z(θ), U(θ, di)〉 is incentive compatible if and only if the allocation

of education level and gross utility, 〈z(θ), V (θ)〉, is incentive compatible. Appealing to Mas-

Colell, Whinston, and Green (1995, Proposition 23.D.2), we can characterize the set of all

incentive compatible allocations by the following lemma.

Lemma 1. In both cases, an allocation 〈z(θ), V (θ)〉 is incentive compatible if and only if

(i) z(θ) is non-decreasing.

(ii) Define θ0 ≡ inf{θ|z(θ) > 0}; then, for θ > θ0,

V (θ) = V (θ0) +

∫ θ

θ0

−Cθ(z(s), s)ds = V (θ0) +

∫ θ

θ0

z(s)ds.
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Note that if the lowest participating type θ0 is an interior type, i.e., θ0 ∈ (0, 1), then by

continuity, V (θ0) is optimally set to 0.6 Following Armstrong and Vickers (2001), we think

each school as directly providing utility to the worker. Let Vi(θ) be school i’s rent provision

to a type-θ worker. According to Lemma 1, if school i’s allocation 〈zi(θ), Vi(θ)〉 is incentive

compatible, then we must have

V ′i (θ) = zi(θ), Ti(zi(θ)) = Wi(zi(θ))− C(zi(θ), θ)− Vi(θ).

This means that any incentive compatible contract can be characterized by a rent provision

schedule Vi(θ), and thus, individual rationality holds if and only if Vi(θ)− kdi ≥ 0.

Given the rent provision schedules {Vi(θ)}, i = 1, 2, the worker decides whether to attend

school, if so, which school to attend. If a type-(θ, di) worker chooses to attend school i, then

we must have

Vi(θ)− kdi ≥ max

{
0, V−i(θ)− k(

1

2
− di)

}
.

This is equivalent to

di ≤ min

{
Vi(θ)

k
,
1

4
+
Vi(θ)− V−i(θ)

2k

}
:= si(θ).

Hence, school i’s market share for each vertical type θ is given by 2si(θ). Since Vi(θ) is

increasing in θ, there is a cutoff type θ1 above which the horizontal market is fully covered;

that is, if the worker has a vertical type θ ∈ [θ1, 1], then he attends school irrespective of his

horizontal type di. As such, we call the interval [θ1, 1] the competition range, as in Yang and

Ye (2008). In contrast, for θ ∈ [θ0i , θ1),
7 the horizontal market is partially covered; thus, we

call the interval [θ0i , θ1) the local monopoly range. Note that θ1 is endogenously given by

V1(θ1) + V2(θ1) =
k

2
.

Then, we can represent the schools’ expected payoffs with respect to the rent provision

schedules. Given V−i, school i’s expected profit equals twice∫ 1

θ0i

[Wi(zi(θ))− C(zi(θ), θ)− Vi(θ)] si(θ)dθ.

6V (θ0) is not necessarily 0 if θ0 is the lowest type θ. In general, if the lowest type can generate positive

social surplus, then the school may leave a positive “rent” V (θ) to type θ, in order to gain the market share.
7Here, θ0i is also a control variable chosen by school i such that any type θ ∈ [0, θ0i) is excluded from

attending school i.
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By decomposing the above integral into the local monopoly range and the competition range,

we have that school i’s expected profit is twice∫ θ1

θ0i

[Wi(zi(θ))− C(zi(θ), θ)− Vi(θ)]
Vi(θ)

k
dθ

+

∫ 1

θ1

[Wi(zi(θ))− C(zi(θ), θ)− Vi(θ)] ·
[

1

4
+
Vi(θ)− V−i(θ)

2k

]
dθ. (2.1)

In the observed case, correctness of the market belief means that Wi(z) = E[Q(z, θ)|zi(θ)]
for any implementable allocation zi(θ) that the school chooses. Then, from the law of total

expectation, (2.1) can be rewritten as∫ θ1

θ0i

[S(zi(θ), θ)− Vi(θ)]
Vi(θ)

k
dθ +

∫ 1

θ1

[S(zi(θ), θ)− Vi(θ)] ·
[

1

4
+
Vi(θ)− V−i(θ)

2k

]
dθ. (2.2)

Thus, given V−i, school i’s problem is to choose a contract 〈zi(θ), Vi(θ)〉 to maximize (2.2),

subject to zi(θ) being non-decreasing and that V ′i (θ) = zi(θ). If the solution to this program

is identical for schools i = 1, 2 with zi(θ) being increasing over [θ0, 1], then we obtain a

symmetric school-optimal separating equilibrium.

In the unobserved case, given V−i and Wi, each school i’s problem is to choose a contract

〈zi(θ), Vi(θ)〉 to maximize (2.1), subject to zi(θ) being non-decreasing and that V ′i (θ) = zi(θ).

Without loss of generality, assume that each school chooses a contract, while simultaneously,

the labor market chooses a corresponding wage schedule. Then, the equilibrium conditions

can be simplified as follows: for each school i = 1, 2, (i) given V u
−i and W u

i , 〈zui (θ), V u
i (θ)〉

solves school i’s problem; (ii)W u
i (z) = E[Q(z, θ)|zui (θ)] such that the market belief is updated

using Bayes’ rule. In the case of multiple equilibria, we select a symmetric school-optimal

separating equilibrium.

2.3 A Bertrand-Spence Benchmark: k = 0

As a benchmark, we consider a duopoly education market in which the worker can attend

any school at zero transportation cost, i.e., k = 0. In this case, a symmetric Bertrand

competition induces both schools to set tuition at the marginal cost which is zero. The

model is thus translated to a Spence’s signaling game (Spence 1973). An equilibrium of

this game consists of an education function zs(θ) and a wage schedule W s(z), such that (i)

given W s(z), zs(θ) maximizes U(z, θ); (ii) W s(z) = E[Q(z, θ)|zs(θ)] with the market belief

updated using Bayes’ rule. As in Lu (2018), we focus on the least-cost separating equilibrium

such that zs(0) = zfb(0). Applying Lu (2018, Proposition 3.1), we have that the least-cost
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separating equilibrium exists, such that

zs(θ) =
(2γ + 1)θ

2
on [0, 1],

W s(z) =
2γ

2γ + 1
z2 + z on [0, γ +

1

2
].

It follows that zs(θ) > zfb(θ) for all θ > 0. The intuition is well understood. Specifically,

since the worker’s ability is private information, he attempts to separate himself from lower

ability workers by acquiring more education, thereby leading to over-education. Given the

analytical solution of zs(θ), the signaling effect is explicitly given by

Qθ(z
s(θ), θ) · θs(z) =

2γz

2γ + 1
> 0.

The signaling effect reflects the feature that a higher education level makes the labor market

regard the worker as having higher ability.

Furthermore, we can parameterize the intensity of signaling in this model. Let us define

the intensity of signaling to be the ratio of the over-invested education in Spence’s model,

i.e., zs(θ)− zfb(θ), to the first best education level zfb(θ) for θ > 0. Substituting, we have

zs(θ)− zfb(θ)
zfb(θ)

=
γ

γ + 1
.

Clearly, the intensity of signaling is increasing in the parameter γ. To see the idea, note that

the larger γ is, the stronger complementarity between the worker’s ability and education is.

Due to the signaling effect, a higher education level induces the labor market to regard the

worker as having higher ability; hence, if ability complements education to a larger extent,

the marginal benefit of education will be even higher, thereby enhancing signaling through

education. Consequently, over-education will be more serious.

3 Monopoly

In this section, as a well-controlled benchmark, we consider a monopoly education market

in which both schools are owned by a monopolist. The monopolist’s objective is thus to

maximize the joint profit of the two schools. Since the distribution of the worker’s type is

uniform and the schools’ locations and technologies are symmetric, we assume that for both

the observed and unobserved case, the two schools offer an identical contract to the worker,

thereby resulting in symmetric market shares. In what follows, we start our analysis with

the observed case.
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3.1 The Observed Case

Since both schools offer the same contract, we can drop the subscripts to simplify (2.2). The

monopolist’s problem can be stated as

max

∫ θ1

θ0

[S(z(θ), θ)− V (θ)]
V (θ)

k
dθ︸ ︷︷ ︸

Phase I: partially covered range

+

∫ 1

θ1

[S(z(θ), θ)− V (θ)]
1

4
dθ︸ ︷︷ ︸

Phase II: fully covered range

s.t. V ′(θ) = z(θ), z′(θ) ≥ 0, V (θ1) =
k

4
.

If further θ0 ∈ (0, 1], then we have V (θ0) = 0; otherwise, we have to choose V (θ0) optimally.

As is standard in the literature, we solve the above program by relaxing the monotonicity

constraint of z(θ) first and verity it ex post to justify the approach. The monopolist’s problem

is a two-phase optimal control problem: in Phase I, the horizontal market is partially covered;

in Phase II, in contrast, the horizontal market is fully covered. Define the Hamiltonian of

the two phases as follows:

H1(z, V, λ, θ) = [S(z, θ)− V ]
V

k
+ λz = [(γ + 1)θz − z2 − V ]

V

k
+ λz,

H2(z, V, λ, θ) = [S(z, θ)− V ]
1

4
+ λz = [(γ + 1)θz − z2 − V ]

1

4
+ λz,

where z is a control variable, V is a state variable and λ is the associated adjoint variable.

From the Maximum Principle,8 if 〈z∗(θ), V ∗(θ)〉 solves the monopolist’s problem, then for

each phase i = 1, 2, we must have

z∗(θ) = arg max
z

Hi (z, V
∗(θ), λ(θ), θ) ,

λ̇(θ) = − ∂

∂V
Hi (z

∗(θ), V ∗(θ), λ(θ), θ) ,

combined with the transversality condition λ(1) = 0.

It follows that Phase I can be characterized by the following second order autonomous

ordinary differential equation (ODE):

(γ + 3)V − 2V̈ V − V̇ 2 = 0. (3.1)

To solve (3.1), we first consider the case in which the vertical market is partially covered;

that is, the optimal lowest participating type θ∗0 ∈ (0, 1], and thus, V (θ∗0) = 0. Given this

8See Seierstad and Sydsaeter (1986) for details.
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boundary condition, it can be proved that the unique solution to (3.1) is given by9

V ∗(θ) =
γ + 3

8
(θ − θ∗0)2, z∗(θ) =

γ + 3

4
(θ − θ∗0).

Analogously, in Phase II, we obtain the ODE: V̈ = ż = γ+2
2

. Moreover, the transversality

condition λ(1) = 0 implies that z(1) = γ+1
2

. Thus, the solution to Phase II is given by

V ∗(θ) =
(γ + 2)θ2

4
− θ

2
+ β(θ∗1), z

∗(θ) =
(γ + 2)θ

2
− 1

2
,

where β(θ∗1) depends on the optimal switching type θ∗1 which remains to be determined. Note

that in both phases, z(θ) is increasing in θ. Thus, the monotonicity constraint is satisfied

automatically, meaning that a symmetric school-optimal separating equilibrium exists.

To determine θ∗1 and thus θ∗0, we impose the smooth pasting conditions: V (θ∗−1 ) = V (θ∗+1 )

and z(θ∗−1 ) = z(θ∗+1 ).10 Combined with the condition V (θ∗1) = k
4
, θ∗1 and θ∗0 are thus given by

θ∗0 =
1

γ + 2
−

(γ + 1)
√

2(γ + 3)k

2(γ + 2)(γ + 3)
, θ∗1 =

1

γ + 2
+

√
2(γ + 3)k

2(γ + 2)
. (3.2)

It thus follows that for θ ∈ [θ∗1, 1], V (θ) is given by

V ∗(θ) =
k

4
+ (θ − θ∗1)

[
(γ + 2)(θ + θ∗1)

4
− 1

2

]
.

Note that θ∗0 is an interior solution if and only if k < 2(γ+3)
(γ+1)2

. We shall consider two cases.

First, γ ≤ 1. In this case, when k ≥ 2(γ+3)
(γ+1)2

, we have θ∗1 ≥ 1, meaning that Phase II is

never entered. Then, θ∗0 is pinned down by the transversality condition λ(1) = 0, such that

θ∗0 = 1−γ
γ+3
≥ 0, with equality holding at γ = 1 only. Hence, if γ < 1, then θ∗0 is always an

interior solution; in addition, Phase I (the partially covered range) always exists, whereas

Phase II (the fully covered range) exists only if k < 2(γ+1)2

γ+3
. Second, γ > 1. In this case,

when k = 2(γ+3)
(γ+1)2

, we have θ∗1 < 1, meaning that Phase II always exists. Thus, if k ≥ 2(γ+3)
(γ+1)2

,

then θ∗0 ≤ 0; that is, the vertical market is fully covered. As a result, V (θ) is free at the

lowest type θ = 0 and the boundary condition V (0) = 0 does not necessarily hold. Since

such a case is more complicated, we postpone further analysis until we have summarized the

results of the case in which the vertical market is partially covered.

Suppose that γ ≤ 1, then the monopolist’s optimal symmetric contract exists and has

been characterized in the above analysis. Let 〈zmo(θ), V mo(θ)〉 be the equilibrium contract

9Rochet and Stole (2002) shows that if a convex solution to (3.1) exists, then given specific boundary

conditions, it is unique. See Rochet and Stole (2002, Appendix, p. 304-305) for details.
10The smooth pasting conditions are implied by the Weierstrass-Erdmann necessary condition.
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in the observed case under monopoly, and θmo0 and θmo1 be the lowest participating type and

switching type, respectively. Then, we have that zmo(θ) is increasing on [θmo0 , 1]; in particular,

if γ < 1, then θmo0 > 0 always holds. We have thus obtained the school-optimal separating

equilibrium. Indeed, this equilibrium is the one that yields the highest equilibrium payoff

for the monopolist among all equilibria. To summarize, we have the following proposition:

Proposition 1. Suppose that γ ≤ 1, then in the observed case under monopoly, the sym-

metric school-optimal separating equilibrium exists. Specifically, for k ∈
(

0, 2(γ+1)2

(γ+3)

)
,

zmo(θ) =


γ+3
4

(θ − θmo0 ) if θmo0 ≤ θ < θmo1

(γ+2)θ
2
− 1

2
if θmo1 ≤ θ ≤ 1,

where θmo0 and θmo1 are given by θ∗0 and θ∗1 in (3.2), respectively. For k ≥ 2(γ+1)2

(γ+3)
,

zmo(θ) =
γ + 3

4
(θ − θmo0 ) , if θmo0 ≤ θ ≤ 1,

where θmo0 = 1−γ
γ+3

. If γ < 1, then for any k > 0, θmo0 > 0 and zmo(θ) ≤ zfb(θ) on [0, 1] with

equality holding at θ = 1 only; if γ = 1, then for k ≥ 2(γ+1)2

(γ+3)
, zmo(θ) = zfb(θ) on [0, 1].

The monopolist’s optimal contract has two noticeable features. First, when γ < 1, there

is always under-education on both the extensive and intensive margin. Specifically, there is

always a positive measure of vertical types who are excluded from education, i.e., θmo0 > 0.

In addition, for all but the highest vertical type, education level is downward distorted, i.e.,

zmo(θ) < zfb(θ) on [θmo0 , 1). This result stands in contrast to that of Spence’s model in which

there is always over-education. Second, perhaps it is more striking that when γ = 1, if the

market contains only the partially covered range, then the monopoly optimal contract in

fact achieves the first-best! In contrast, Lu (2018) studies monopolistic nonlinear pricing for

signals with deterministic participation and find that the optimal contract can achieve the

first-best asymptotically.11 In addition, Rochet and Stole (2002) and Yang and Ye (2008)

study monopolistic nonlinear pricing for non-signaling goods with random participation,

and both papers find that the optimal contract always exhibits a downward distortion with

efficiency achieved only on the boundary.12

The above features result from the interaction between three forces: market penetration,

the monopolist’s screening and the worker’s signaling. To be specific, let us first consider the

11Using a numerical example similar to the current model, Lu (2018) shows that zmo(θ)/zfb(θ) → 1 as

γ →∞. See Section 4.2 of Lu (2018) for details.
12See Rochet and Stole (2002, Proposition 4) and Yang and Ye (2008, Proposition 1).
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fully covered range. Note that the monopolist’s market share is already maximized for each

vertical type, thus it cannot benefit from supplying more rent to gain market share. Since

a higher vertical type can benefit from his cost advantage over lower types, the monopolist

has to leave information rent to the worker to incentivize truth-telling. This implies that

the marginal profit of education is unambiguously less than the marginal social surplus in

the fully covered range, and thus, the monopolist under-supplies education. In Lu (2018),

the market contains only the fully covered range, and hence, there is always a downward

distortion with efficiency achieved only on the top.

In contrast, in the partially covered range, the monopolist can benefit from rent provision

to obtain market share. In this case, increasing education supply has two opposite effects.

On one hand, it reduces per-customer profit by providing the worker with more information

rent. On the other hand, a larger rent also results in a larger market share. The optimal

allocation rule thus must balance these two opposite effects. But the question is: why does

under-education always occur in the partially covered range when γ < 1, whereas the social

optimum can be fully achieved when γ = 1?

To answer this question, one should understand the effects of signaling on the optimal

allocation. As is pointed out by Lu (2018), in the observed case under monopoly, signaling

can mitigate the screening distortion. To see this, note that given the monopolist’s tuition

scheme, the subgame is indeed a Spence’s signaling game as if the worker’s cost function

was given by T (z) + C(z, θ); thus, the signaling effect induces the worker to “over-invest”

in education in terms of total cost. The signaling incentive reduces the worker’s willingness

to intimate lower types, therefore, the worker extracts less information rent than when

signaling is absent. To illustrate, suppose that the labor market can observe the worker’s

ability, thereby eliminating signaling.13 As a result, we return to Rochet and Stole (2002)

or Yang and Ye (2008). In this case, the IC constraint is given by V ′(θ) = Sθ(z(θ), θ).

In contrast, in the current environment, it is given by V ′(θ) = Cθ(z(θ), θ) < Sθ(z(θ), θ).

This reveals that the monopolist leaves less information rent to the worker when signaling

is present, and thus, signaling can mitigate the screening distortion.

Recall that γ measures signaling intensity: the larger γ is, the more intense signaling is.

Thus, if γ is relative big, then the screening distortion can be mitigated to a relatively great

extent. Specifically, if the market has only the partially covered range, then it can be easily

verified that the ratio zmo(θ)/zfb(θ) is increasing in γ for all θ, and arrives at 1 when γ = 1;

that is, the effects of market penetration and signaling can exactly offset that of screening,

13Signaling is eliminated because the worker’s wage always equals his actual productivity.
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thereby restoring the first-best allocation.

At first glance, it may be surprising that under information asymmetry the monopolistic

profit-maximizing pricing can be welfare-maximizing. To see the intuition, note that if the

market contains only the partially covered range, then the marginal profit of each type θ is

given by [S(z(θ), θ) − V (θ)]V (θ)/k. Suppose that the monopolist can observe the worker’s

vertical type, then the optimal contract 〈z∗(θ), V ∗(θ)〉 is simply that z∗(θ) = zfb(θ) and

V ∗(θ) = S(zfb(θ), θ)/2. This is because V = S/2 maximizes the marginal profit for any S

and z∗(θ) = zfb(θ) maximizes S(z, θ). However, even without the ability to contract on θ,

such an allocation can still be implemented without violating the IC constraint V ′(θ) = z(θ)

when γ = 1. In contrast, in the contracting problems of Rochet and Stole (2002) and Yang

and Ye (2008), the first-best can never be fully achieved. Suppose not, then z∗(θ) = zfb(θ)

on [0, 1]. It follows from the envelope theorem and the associated IC constraint that

S∗(θ) = S(zfb(θ), θ) =

∫ θ

0

Sθ(z
fb(s), s)ds = V ∗(θ).

Thus, the marginal profit is always zero, which cannot be optimal. Again, this is due to that

the monopolist supplies more information rent when signaling is absent.

It is worth noting that when γ = 1, the worker’s productivity and cost heterogeneities

are equally significant (i.e., Qzθ = Czθ). Since the lowest type is totally unproductive, at

the social optimum, each type’s social surplus is exactly twice his information rent, as is

shown in the above. Thus, the first-best can be fully achieved if the market has only the

partially covered range. Moreover, it can be easily verified that in equilibrium the signaling

effect that is measured by Qθ · θ′(z) equals the marginal tuition T ′(z).14 This implies that

when the market contains only the partially covered range, the monopolistic optimal tuition

scheme levies Pigovian tax on signaling, which undoes the signaling effect and thus restores

the first-best. In contrast, in Lu (2018), the market has only the fully covered range; thus,

the optimal tuition scheme “over-taxes” signaling and leads to a downward distortion.

Going forward, we turn to the case in which γ > 1. When k < 2(γ+3)
(γ+1)2

, we have θ∗0 > 0, i.e.,

the vertical market is partially covered. Thus, the equilibrium contract is characterized by

Proposition 1. In contrast, when k ≥ 2(γ+3)
(γ+1)2

, we have θ∗0 ≤ 0, i.e., the vertical market is fully

covered. In this case, the equilibrium contract in the fully covered range is characterized by

14When γ = 1, if in equilibrium only the partially covered range exists, then W (z) and T (z) are given by

W (z) = z2 + z, T (z) =
1

2
z2.

Thus, we have Qθ · θ′(z) = 2z − θ(z) = z = T ′(z), as zmo(θ) = zfb(θ) = θ.
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Figure 2: A Numerical Solution. This figure assumes that γ = 2 and k = 2.

Proposition 1 too; thus, the boundary conditions V (θ∗1) = k
4

and V̇ (θ∗1) =
(γ+2)θ∗1−1

2
remain.

However, the initial state V (0) is now free. This means that the adjoint variable λ satisfies:

λ(0) = 0.15 It follows that efficiency occurs at the bottom, i.e., z∗(0) = zfb(0) = 0.16 This

yields an extra boundary condition: V̇ (0) = 0. In summary, when k ≥ 2(γ+3)
(γ+1)2

, the optimal

contract in the partially covered range is given by the solution to the following problem:

(γ + 3)V − 2V̈ V − V̇ 2 = 0,

s.t. V̇ (0) = 0, V (θ1) =
k

4
, V̇ (θ1) =

(γ + 2)θ1 − 1

2
.

Note that this is not a standard boundary value problem (BVP), as the boundary conditions

involve an endogenous endpoint θ1. As far as we know, no existing BVP theorem can be

applied directly to show the existence and uniqueness of the solution to this problem, not

mention deriving an analytical solution. In this regard, we solve the problem using numerical

methods.17 In Figure 2, panel (a) depicts a convex solution V (θ) for a sufficiently large k,

and panel (b) depicts the associated equilibrium tuition scheme Tm0(z).

The equilibrium outcome has a salient feature: that is, when the unit transportation cost

k is sufficiently large, over-education occurs at the low end of the spectrum of θ. Moreover,

if the market contains the fully covered range, then there exists a cutoff type such that all

lower vertical types obtain more education than the first-best, whereas the others obtain

15See Seierstad and Sydsaeter (1986, p. 185-186) for details
16Rochet and Stole (2002) provides an intuitive discussion about efficiency at the bottom in its Appendix.
17The MATLAB code for all numerical calculations of this paper is available upon request.
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Figure 3: Over-Education at the Low End.

less than the first best. This is illustrated in Figure 3 which assumes the same numerical

example as in Figure 2. To summarize, we have the following proposition:

Proposition 2. Suppose that γ > 1, then for sufficiently large k, if the market contains both

the partially covered and fully covered range, then there exits a cutoff θ̃ ∈ (0, θmo1 ), such that

zmo(θ) > zfb(θ) on (0, θ̃), whereas zmo(θ) < zfb(θ) on (θ̃, 1).

As is depicted by Figure 3, zmo(θ) is single-crossing zfb(θ) from above in the interior of

the partially covered range. The intuition for over-education occurring at the low end is that

when γ > 1, signaling is relatively intense; if the transportation cost is relatively high, then

to gain market share, the monopolist charges low prices, especially at the low end of the

vertical market. As is illustrated in panel (b) of Figure 2, the tuition scheme is flat and close

to 0 for low education levels. Thus, at the low end, signaling outweighs screening, leading to

over-education. In addition, from Figure 3, zmo(θ) is bounded above by zs(θ) which is the

equilibrium education function in Spence’s model. Intuitively, since tuition is fixed at zero,

education is the least costly in Spence’s signaling game, compared to other models; thus, the

worker obtains the highest education level in Spence’s model.

We are interested in the impacts of the unit transportation cost k on the equilibrium

allocation, in particular, on the (vertical) market coverage and quantity distortion. As in

Yang and Ye (2008), k measures the market’s horizontal differentiation: a larger k means that

the two schools are more horizontally differentiated. Following immediately from the previous

analysis, Corollary 1 below shows that when the fully covered range exists and the vertical
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market is not fully covered, as horizontal differentiation increases, the monopolist raises the

market coverage, offers more rent, and reduces the downward distortion in education level.

When horizontal differentiation is eliminated, i.e., k = 0, the equilibrium outcome coincides

with that of the observed case of Lu (2018). Formally, we have:

Corollary 1. In the observed case under monopoly, when k is such that θmo0 > 0, θmo1 < 1, as

k increases: (i) zmo(θ) increases on (θmo0 , θmo1 ] but remains the same on (θmo1 , 1]; (iii) V mo(θ)

increases on (θmo0 , 1]; (ii) the market coverage [θmo0 , 1] extends, whereas the fully covered range

[θmo1 , 1] shrinks. If k = 0, then the equilibrium outcome coincides with that of the observed

case of Lu (2018).

Intuitively, as horizontal differentiation rises, to maintain market share in the partially

covered range, the monopolist has to provide the worker with more rent, which, according

to Lemma 1, can be achieved by either increasing the market coverage, i.e., reducing θ0, or

supplying more education to those participated. The optimal allocation requires a balance

between these two approaches. Corollary 1 shows that both methods will be employed in

equilibrium when k increases. Corollary 1 also states that as k increases, the fully covered

range shrinks. This is because the switching type θ1’s education level is pinned down by the

IC constraint in the fully covered range, which does not directly depend on k; as education

levels increase in the partially covered range, θ1 must be higher accordingly. In other words,

as the fixed fee of attending school kdi increases, the marginal type θ1 must be higher.

3.2 The Unobserved Case

We now turn to the unobserved case. Since we consider a symmetric equilibrium, we assume

that the labor market offers the same wage to both schools’ student for a given education

level, thereby allowing us to drop the subscript of the wage schedule. Then, given some wage

schedule W (z), the monopolist solves:

max

∫ θ1

θ0

[W (z(θ))− C(z(θ), θ)− V (θ)]
V (θ)

k
dθ︸ ︷︷ ︸

Phase I: partially covered range

+

∫ 1

θ1

[W (z(θ))− C(z(θ), θ)− V (θ)]
1

4
dθ︸ ︷︷ ︸

Phase II: fully covered range

s.t. V ′(θ) = z(θ), z′(θ) ≥ 0, V (θ1) =
k

4
.

If further θ0 ∈ (0, 1], then we have V (θ0) = 0; otherwise, as in the observed case, we have to

choose V (θ0) optimally.
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Similarly to the observed case, we define the Hamiltonian of the two phases as follows:

H1(z, V, λ, θ) = [W (z)− C(z, θ)− V ]
V

k
+ λz,

H2(z, V, λ, θ) = [W (z)− C(z, θ)− V ]
1

4
+ λz,

The key difference from the observed case is that here W (z) is endogenously determined

by the equilibrium condition. Suppose that the school-optimal separating equilibrium exits,

and let 〈z∗(θ), V ∗(θ)〉 solves the monopolist’s problem, then from the Maximum Principle,

we have the following first oder conditions (F.O.C.):

∂

∂z
H1(z

∗(θ), V ∗(θ), λ(θ), θ) = [W ′(z∗(θ))− Cz(z∗(θ), θ)]
V ∗(θ)

k
+ λ(θ) = 0,

∂

∂z
H2(z

∗(θ), V ∗(θ), λ(θ), θ) = [W ′(z∗(θ))− Cz(z∗(θ), θ)]
1

4
+ λ(θ) = 0,

along with the evolution rule for λ:

λ̇(θ) = − ∂

∂V
Hi (z

∗(θ), V ∗(θ), λ(θ), θ) , i = 1, 2,

and the transversality condition λ(1) = 0.

Moreover, in equilibrium, the market belief should be correct: W (z∗(θ)) = Q(z∗(θ), θ).

Thus, we have W ′(z∗(θ)) = Qz(z
∗(θ), θ) + Qθ(z

∗(θ), θ) · θ∗′(z). Combining these conditions

and substituting the model assumptions, we derive an autonomous ODE for Phase I:

(2γ + 3)V − γV V̇
...
V

V̈ 2
− 2V̈ V +

γV̇ 2

V̈
− V̇ 2 = 0. (3.3)

To solve (3.3), we first consider the case in which the vertical market is partially covered,

i.e., θ∗0 ∈ (0, 1], and thus, V (θ∗0) = 0. Given this boundary condition, it can be verified that

the solution to (3.3) is given by

V ∗(θ) =
4γ + 3

8
(θ − θ∗0)2, z∗(θ) =

4γ + 3

4
(θ − θ∗0),

and thus, the wage schedule in Phase I is given by

W ∗(z) =
4γ

4γ + 3
z2 + (γθ∗0 + 1)z,

where the lowest participating type θ∗0 remains to be determined.

Then, we consider Phase II. Since λ′(θ) = 1
4

and λ(1) = 0, we have λ(θ) = θ−1
4

in Phase

II. Substituting λ(θ) and the condition W (z) = Q(z, θ(z)) into the F.O.C. for z in Phase II,

we obtain the following ODE:

W ′(z) = 2(z − W

γz
+
γ + 1

γ
).

23



The general solution to this ODE is given by

W (z) =
γ

γ + 1
z2 +

2(γ + 1)

γ + 2
z + c · z

γ
2 ,

where c is some parameter. To fully characterize W (z), we need to pin down c. As is argued

previously, the current model converges to Lu (2018) as k → 0. Thus, we apply Lu (2018,

Poposition 5.1) to the current model, assuming that k = 0, and conclude that c = 0. As

such, we have fully characterized W (z) for Phase II.

It thus follows that in Phase II, V ∗(θ) and z∗(θ) are given by

V ∗(θ) =
γ + 1

2
θ2 − γ + 1

γ + 2
θ + β(θ∗1), z

∗(θ) = (γ + 1)(θ − 1

γ + 2
)

where β(θ∗1) depends on the optimal switching type θ∗1 that remains to be determined. Then,

by smooth pasting and the condition V (θ∗1) = k
4
, θ∗1 and θ∗0 are given by

θ∗0 =
1

γ + 2
−

√
2(4γ + 3)k

4(γ + 1)(4γ + 3)
, θ∗1 =

1

γ + 2
+

√
2(4γ + 3)k

4(γ + 1)
. (3.4)

Substituting θ∗1, we have that in Phase II, V (θ) is given by

V ∗(θ) =
k

4
+ (θ − θ∗1)

[
(γ + 1)(θ + θ∗1)

4
− γ + 1

γ + 2

]
.

In addition, from (3.4), if 8(γ+1)4

(4γ+3)(γ+2)2
< k < 8(γ+1)2(γ+3)2

(4γ+3)(γ+2)2
, then θ∗0 > 0 and θ∗1 > 1;

thus, Phase I exits, while Phase II is never entered. In this case, θ∗0 is pinned down by the

transversality condition λ(1) = 0, such that θ∗0 = 1
2γ+3

> 0. Thus, for any k > 0, we have

θ∗0 > 0, that is, the vertical market is always partially covered.

Since z∗(θ) is increasing in both Phase I and II, and the initial condition is optimally

chosen, we obtain the school-optimal separating equilibrium. Let 〈zmu(θ), V mu(θ)〉 be the

equilibrium contract in the unobserved case under monopoly, and θmu0 and θmu1 be the lowest

participating type and switching type, respectively. We summarize the equilibrium education

allocation of the unobserved case in the proposition below.

Proposition 3. In the unobserved case under monopoly, the symmetric school-optimal sep-

arating equilibrium exists. Specifically, for k ∈
(

0, 8(γ+1)4

(4γ+3)(γ+2)2

)
,

zmu(θ) =


4γ+3
4

(θ − θmu0 ) if θmu0 ≤ θ < θmu1

(γ + 1)θ − γ+1
γ+2

if θmu1 ≤ θ ≤ 1,
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where θmu0 and θmu1 are given by θ∗0 and θ∗1 in (3.4), respectively. For k ≥ 8(γ+1)4

(4γ+3)(γ+2)2
,

zmu(θ) =
4γ + 3

4
(θ − θmu0 ), if θmu0 ≤ θ ≤ 1,

where θmu0 = 1
2γ+3

. It follows that there exits a cutoff θ̃ ∈ (θmu0 , 1), such that zmu(θ) < zfb(θ)

on (θmu0 , θ̃), whereas zmu(θ) > zfb(θ) on (θ̃, 1).

As is immediately implied by Proposition 3, the degree of horizontal differentiation that

is measured by k has similar effects on education supply, the worker’s gross utility and the

market coverage as in the observed case. Specifically, we have the following corollary:

Corollary 2. In the unobserved case under monopoly, when the market contains the fully

covered range, as k increases: (i) zmu(θ) increases for θ ∈ (θmu0 , θmu1 ] but remains the same

for θ ∈ (θmu1 , 1]. (ii) V mu(θ) increases for θ ∈ (θmu0 , 1]; (iii) the market coverage [θmu0 , 1]

enlarges, whereas the fully covered range [θmu1 , 1] shrinks. If k = 0, then the equilibrium

outcome coincides with that of the unobserved case of Lu (2018).

We are interested in the difference in equilibrium allocation between the observed and

unobserved case. Proposition 3 shows that in contrast to the observed case, in the unobserved

case, both under-education and over-education occur in equilibrium. Specifically, there exits

a cutoff type such that all lower types obtain less education than the first-best, whereas

the others obtain more than the first best. The next proposition shows further that in the

unobserved case, the (vertical) market coverage is smaller than that of the observed case,

whereas the fully covered range is larger in the unobserved case. Moreover, there exists a

cutoff type in the partially covered range of the unobserved case, such that all lower types

obtain less education in the unobserved case than in the observed case, whereas the others

obtain more education in the unobserved case. Formally, we have:

Proposition 4. For any γ, k > 0, we have θmu0 > θmo0 and θmu1 < θmo1 . Furthermore, there

exits a cutoff θ̃ ∈ (θmu0 , θmu1 ), such that zmu(θ) < zmo(θ) on (θmo0 , θ̃), whereas zmu(θ) > zmo(θ)

on (θ̃, 1]. The length of the interval (θmo0 , θ̃) is increasing in k, and vanishes as k → 0.

Proposition 4 indicates that education levels are always higher in the unobserved case

than in the observed case within the fully covered range of both cases. This result generalizes

that of Lu (2018) in which the market contains only the fully covered range in both cases,

and thus, the worker obtains more education in the unobserved case than in the observed

case. As in Lu (2018), this result is driven by a signal jamming effect. Specifically, in the

unobserved case, since the labor market cannot observe the actual cost of education, it does
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not know whether a difference in education level is caused by a tuition change or worker cost

heterogeneity. Suppose that the monopolist lowers tuition so that the worker obtains more

education than in the initial state. When the labor market observes the tuition scheme,

it cuts wages, since any education level now corresponds to a lower-ability worker. This

dampens the worker’s demand for additional education. In contrast, when the labor market

does not observe the tuition scheme, it does not adjust wages despite that tuition changes.

Thus, the demand for education is more elastic in the unobserved case. This provides the

monopolist with an incentive to secretly supply more education and persuades the labor

market that the worker is more productive than is actually the case. Since in the observed

case efficiency occurs at the top, over-education must occur at the high end in the unobserved

case, as is predicted by Proposition 3. In equilibrium, however, the labor market correctly

anticipates the monopolist’s incentive and offers lower wages, as education is inflated. This

reduces the worker’s willingness to pay, and thus, the monopolist achieves lower profits.

Furthermore, Proposition 4 reveals a significant distinction between Lu (2018) and the

current model. That is, an interval of vertical types at the low end obtain more education in

the observed case than in the unobserved case; the length of this interval is increasing in the

degree of horizontal differentiation and vanishes as the degree approaches zero. Intuitively,

when horizontal differentiation rises, to maintain the market share in the partially covered

range, the monopolist offers the worker higher rent by increasing both the market coverage

and education levels. However, the increase in education supply is smaller in the unobserved

case than in the observed case, especially at the low end of the market. This is because if

the monopolist allocates the same education level to lower types as in the observed case,

then the monopolist should allocate more education and leave more rent to higher types to

remain incentive compatibility. But since those higher types already obtain higher education

levels than in the observed case, supplying more education to them is not profitable. Thus,

an interval of lower vertical types obtain less education in the unobserved case than in the

observed case. As horizontal differentiation increases, this interval extends, meaning that

the market coverage is larger in the observed case at any degree of horizontal differentiation.

Indeed, Propositions 3 and 4 imply that the education function is uniformly steeper in the

unobserved case than in the observed. These features are illustrated in Figure 4.

Proposition 4 implies that an interval of lower vertical types obtain lower gross utility

in the unobserved case than in the observed case, whereas the others obtain higher gross

utility in the unobserved case, and the length of this interval is increasing in the degree of

horizontal differentiation. Similarly, the tuition scheme in the unobserved case Tmu is higher
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Figure 4: Education Comparison between the Observed and Unobserved Case

than that in the observed case Tmo at the left tail of the common domain, such a region is

also increasing in horizontal differentiation. These results differ from that of Lu (2018) in

which tuition rates are uniformly lower and the worker is always better-off in the unobserved

case than in the observed case. To summarize:

Proposition 5. For any γ, k > 0, there exits a cutoff θ̃ ∈ (θmu0 , 1), such that V mu(θ) <

V mo(θ) on (θmo0 , θ̃), whereas V mu(θ) > V mo(θ) on (θ̃, 1]. The length of the interval (θmo0 , θ̃)

is increasing in k, and vanishes as k → 0. Furthermore, there exists a cutoff z̃ ∈ (0, 1),

such that Tmu(z) > Tmo(z) on (0, z̃), whereas Tmu(z) > Tmo(z) on (z̃, 1]. The length of the

interval (0, z̃) is increasing in k, and vanishes as k → 0.

From Corollaries 1 and 2, we have that the worker’s gross utility is increasing in the degree

of horizontal differentiation in both the observed and unobserved case. Thus, if the worker is

close to either school, i.e., min{d1, d2} is small enough, then his net utility is also increasing

in the degree of horizontal differentiation. Intuitively, as horizontal differentiation increases,

the worker’s value for education becomes more dispersed, which corresponds to a clockwise

rotation in demand (Johnson and Myatt 2006). Consequently, the monopolist lowers prices

as the marginal consumer’s willingness to pay is lower. This benefits those infra-marginal

consumers who are close to either school. Proposition 5 implies that a low-ability worker

who is close to either school benefits more from the increase in horizontal differentiation in

the observed case than in the unobserved case.

27



4 Duopoly

In this section, we consider a duopoly education market in which each school chooses a

contract to maximize its expected profit, given the other school’s contract. The purpose of

this section is to investigate the effects of market competition on education supply and the

market coverage, compared to the monopoly benchmark, for the observed and unobserved

case separately. For ease of comparison, we focus on the case in which the vertical market

is partially covered in the monopoly case. As such, we assume throughout this section that

k < k̄ := min
{

2(γ+1)2

γ+3
, 2(γ+3)
(γ+1)2

}
. As in the monopoly case, we consider symmetric equilibrium.

We start our analysis with the observed case.

4.1 The Observed Case

Suppose that a symmetric equilibrium exits, such that both schools choose an identical

contract 〈z∗(θ), V ∗(θ)〉. Thus, given that the other school chooses 〈z∗(θ), V ∗(θ)〉, school i’s

best response is to chooses 〈zi(θ), Vi(θ)〉 = 〈z∗(θ), V ∗(θ)〉. Given its expected profit in (2.2),

school i’s problem can be stated as

max

∫ θ1

θ0i

[S(zi(θ), θ)− Vi(θ)]
Vi(θ)

k
dθ︸ ︷︷ ︸

Phase I: the local monopoly range

+

∫ 1

θ1

[S(zi(θ), θ)− Vi(θ)] ·
[

1

4
+
Vi(θ)− V ∗(θ)

2k

]
dθ︸ ︷︷ ︸

Phase II: the competition range

.

s.t. V ′i (θ) = z(θ), z′i(θ) ≥ 0, Vi(θ1) + V ∗(θ1) =
k

2
.

If further θ0i ∈ (0, 1], then we have Vi(θ0i) = 0; otherwise, Vi(θ0i) is free. Analogously, we

define the Hamiltonian of the two phases and substitute S(z, θ), then we have:

H1(zi, Vi, λ, θ) = [(γ + 1)θzi − z2i − Vi]
Vi
k

+ λzi,

H2(zi, Vi, λ, θ) = [(γ + 1)θzi − z2i − Vi] ·
(

1

4
+
Vi − V ∗

2k

)
+ λzi,

Note that Phase I is exactly the same as that in the monopoly case. If θ0i ∈ (0, 1], then

the solution to Phase I is also given by:

V ∗(θ) =
γ + 3

8
(θ − θ∗0)2, z∗(θ) =

γ + 3

4
(θ − θ∗0).

Then, we consider Phase II. By the Maximum Principle, we obtain the necessary conditions:

0 =
[
(γ + 1)θz∗(θ)− z∗2(θ)

]
· 1

4
+ λ(θ),

λ̇(θ) =
1

4
− (γ + 1)θz∗(θ)− z∗2(θ)− V ∗(θ)

2k
,
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Figure 5: A Numerical Solution. This figure assumes that γ = 1 and k = 1.

combined with the transversality condition λ(1) = 0. Eliminating λ(θ) from the above two

equations, we obtain the following ODE:

V̈ ∗ =
γ + 2

2
− 1

k
[(γ + 1)θV̇ ∗ − V̇ ∗2 − V ∗].

In equilibrium, Vi(θ) = V ∗(θ), and thus, V ∗(θ1) = k
4
. From smooth pasting and the solution

to Phase I, we have V̇ ∗(θ1) = z∗(θ1) =

√
2(γ+3)k

4
. In addition, λ(1) = 0 implies that V̇ ∗(1) =

z∗(1) = γ+1
2

. Thus, the existence of equilibrium reduces to the existence of θ1 ∈ (0, 1] and

the existence of a convex solution V (θ) over [θ1, 1], satisfying:

V̈ =
γ + 2

2
− 1

k
[(γ + 1)θV̇ − V̇ 2 − V ] (4.1)

s.t. V (θ1) =
k

4
, V̇ (θ1) =

√
2(γ + 3)k

4
, V̇ (1) =

γ + 1

2
.

Note that (4.1) is not a standard BVP, as it involves an endogenous endpoint θ1. As

far as we know, no existing BVP theorem can be applied directly to show the existence

and uniqueness of the solution to this problem. The oder-reduce techniques introduced by

Rochet and Stole (2002) and Yang and Ye (2008) cannot be applied to (4.1) either. In

this regard, we solve program (4.1) using numerical methods. Let 〈zdo(θ), V do(θ)〉 be the

equilibrium contract in the observed case under duopoly, and θdo0 and θdo1 be the lowest

participating type and switching type, respectively. In Figure 5, panel (a) depicts a convex

solution V do(θ), along with the worker’s gross utility in the monopoly observed case V mo(θ);

panel (b) depicts the associated equilibrium tuition scheme T do(z), along with that of the
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monopoly observed case Tmo(z). It turns out that under duopoly, tuition is lower and the

worker obtains higher utility than under monopoly. We now summarize the equilibrium

education allocation in the proposition below.

Proposition 6. Suppose that k ∈ (0, k̄), then in the observed case under duopoly, the sym-

metric school-optimal separating equilibrium exists, such that

zdo(θ) =


γ+3
4

(θ − θdo0 ) if θdo0 ≤ θ < θdo1

V̇ do(θ) if θdo1 ≤ θ ≤ 1,

where V do(θ) and θdo1 are the solution to problem (4.1), and θdo0 = θdo1 −
√

2k
γ+3

.

Proposition 6 indicates that under duopoly, the equilibrium is discontinuous at k = 0.

When k = 0, the equilibrium is a Bertrand-Spence equilibrium in which tuition is pushed

down to 0 due to a symmetric Bertrand competition, and thus, the market is fully covered

and the education selection is predicted by Spence’s model. However, since social surplus is

close to 0 for sufficiently low types, so long as k > 0, each school becomes a local monopoly

for those types. Thus, each school finds it profitable to exclude some very low types from

education. Since the threshold is endogenously determined, it leads to distortion for infra-

marginal types. In contrast, in Armstrong and Vickers (2001) and Rochet and Stole (2002),

the lowest type can generate sufficiently high social surplus, thus, when the market is fully

covered, both competing duopolists offer a cost-plus-fee tariff. This is because given that the

competitor chooses such a pricing strategy, each duopolist finds it more profitable to make

an efficient offer with a higher fixed fee than any inefficient offer.

Going forward, we investigate the impacts of market competition on education supply

and the market coverage. The next proposition shows that in contrast to the monopoly case,

both education supply and the market coverage are higher under duopoly. This is illustrated

in Figure 6. A similar result has been obtained by Yang and Ye (2008).

Proposition 7. Given k ∈ (0, k̄), we have θdo0 < θmo0 and zdo(θ) > zmo(θ) for θ ∈ (θdo0 , 1).

It follows that in contrast to the monopoly case, more worker types (in terms of both vertical

and horizontal type) receive education, and each participating type obtains higher net utility.

Intuitively, under duopoly, the two schools compete with each other in the fully covered

range by providing the worker with more rent than in the monopoly case, thereby extending

the fully covered range. Moreover, this relaxes the IC constraint. Specifically, each school

fears less about allocating more education to lower types thereby providing higher types with
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Figure 6: The Impacts of Market Competition. This figure assumes that γ = 1 and k = 1.

more rent, as higher types will enjoy more rent anyway due to market competition. Hence,

the schools increase education supply for all participating types, and include some of those

who are not served in the monopoly case.

4.2 The Unobserved Case

We now turn to the unobserved case. Suppose that a symmetric equilibrium exits, in which

both schools choose an identical contract 〈z∗(θ), V ∗(θ)〉, and the labor market offers the same

wage schedule W ∗(z) for both schools’ student. Given the wage schedule W ∗(z) and that

the other school chooses 〈z∗(θ), V ∗(θ)〉, the school’s problem can be stated as

max

∫ θ1

θ0i

[W ∗(zi(θ))− C(zi(θ), θ)− Vi(θ)]
Vi(θ)

k
dθ︸ ︷︷ ︸

Phase I: the local monopoly range

+

∫ 1

θ1

[W ∗(zi(θ))− C(zi(θ), θ)− Vi(θ)] ·
[

1

4
+
Vi(θ)− V ∗(θ)

2k

]
dθ︸ ︷︷ ︸

Phase II: the competition range

.

s.t. V ′i (θ) = z(θ), z′i(θ) ≥ 0, Vi(θ1) + V ∗(θ1) =
k

2
.

31



If further θ0i ∈ (0, 1], then we have Vi(θ0i) = 0; otherwise, Vi(θ0i) is free. Analogously, we

define the Hamiltonian of the two phases and substitute S(z, θ), then we have:

H1(zi, Vi, λ, θ) = [W ∗(zi)− C(zi, θ)− Vi]
Vi
k

+ λzi,

H2(zi, Vi, λ, θ) = [W ∗(zi)− C(zi, θ)− Vi] ·
(

1

4
+
Vi − V ∗

2k

)
+ λzi,

As in the observed case, Phase I coincides with that in the monopoly case. If θ0i ∈ (0, 1],

then the solution to Phase I is also given by:

V ∗(θ) =
4γ + 3

8
(θ − θ∗0)2, z∗(θ) =

4γ + 3

4
(θ − θ∗0).

Then, we consider Phase II. By the Maximum Principle, we obtain the necessary conditions:

0 =
[
W ∗′(z∗(θ))− 2z∗(θ)− 1 + θ

]
· 1

4
+ λ(θ),

λ̇(θ) =
1

4
− W ∗(z∗(θ))− z∗2(θ)− (1− θ)z∗(θ)− V ∗(θ)

2k
,

combined with the transversality condition λ(1) = 0. Moreover, the market belief correctness

means thatW ∗(z) = Q(z, θ∗(z)). Then, substitutingW ∗(z) and eliminating λ from the above

two equations, we obtain the following ODE:

...
V
∗

=
(γ + 2)V̈ ∗ + (γ − 2)V̈ ∗2

γV̇ ∗
+

2

γk

[
V ∗V̈ ∗

V̇ ∗
− (γ + 1)θV̇ ∗ + V̇ ∗V̈ ∗

]
.

In equilibrium, Vi(θ) = V ∗(θ), and thus, V ∗(θ1) = k
4
. From smooth pasting and the solution

to Phase I, we have V̇ ∗(θ1) = z∗(θ1) =

√
2(4γ+3)k

4
. In addition, λ(1) = 0 combined with the

F.O.C. for z implies that W ∗′(z(1))− 2z(1) = 0, meaning that [γ−2V̈ ∗(1)]V̇ ∗(1)
V̈ ∗(1)

= γ + 1. Thus,

the existence of equilibrium reduces to the existence of θ1 ∈ (0, 1] and the existence of a

convex solution V (θ) over [θ1, 1], satisfying:

...
V =

(γ + 2)V̈ + (γ − 2)V̈ 2

γV̇
+

2

γk

[
V V̈

V̇
− (γ + 1)θV̇ + V̇ V̈

]
(4.2)

s.t. V (θ1) =
k

4
, V̇ (θ1) =

√
2(4γ + 3)k

4
,

[γ − 2V̈ (1)]V̇ (1)

V̈ (1)
= γ + 1.

Clearly, there is no closed form solution to (4.2) in general. Thus, we solve program (4.2)

using numerical methods. Let 〈zdu(θ), V du(θ)〉 be the equilibrium contract in the unobserved

case under duopoly, and θdu0 and θdu1 be the lowest participating type and switching type,

respectively. In Figure 7, panel (a) depicts a convex solution V du(θ), along with the worker’s

32



(a) Gross Utility

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.10

0.20

0.31

0.41

0.51

θ

the duopoly unobserved case, V du (θ)

V (θ)

the monopoly unobserved case, V mu(θ)

(b) Tuition Scheme

0 0.14 0.27 0.41 0.54 0.68 0.81 0.95 1.08 1.22 1.35
0

0.08

0.17

0.25

0.33

0.41

z

T (z) the monopoly unobserved case, Tmu(z)

the duopoly unobserved case, Tdu (z)

Figure 7: A Numerical Solution. This figure assumes that γ = 1 and k = 1.

gross utility in the monopoly observed case V mu(θ); panel (b) depicts the associated equilib-

rium tuition scheme T du(z), along with that of the monopoly observed case Tmu(z). As in

the observed case, under duopoly, tuition is lower and the worker obtains higher utility than

under monopoly. We now summarize the equilibrium education allocation in the following.

Proposition 8. Suppose that k ∈ (0, k̄), then in the unobserved case under duopoly, the

symmetric school-optimal separating equilibrium exists, such that

zdu(θ) =


4γ+3
4

(θ − θdu0 ) if θdu0 ≤ θ < θdu1

V̇ du(θ) if θdu1 ≤ θ ≤ 1,

where V du(θ) and θdu1 are the solution to problem (4.2), and θdu0 = θdu1 −
√

2k
4γ+3

.

As in the observed case, the equilibrium is discontinuous at k = 0 in the unobserved case

too. This is because when k = 0, the equilibrium is a Bertrand-Spence equilibrium as in the

observed case. But so long as k > 0, both schools become a local monopoly for sufficiently

low types. Consequently, both schools find it profitable to exclude some very low types and

thus induce distortion for infra-marginal types.

In addition, we are interested in the impacts of market competition on education supply

and the market coverage in the unobserved case. Unfortunately, we cannot obtain a clear

result rigorously. This is mainly due to that in the unobserved case under both monopoly

and duopoly, the highest type’s education level is not fixed at the first-best but is determined

endogenously in equilibrium. Thus, we cannot use the method in the proof of Proposition 7,
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Figure 8: The Impacts of Market Competition. This figure assumes that γ = 1 and k = 1.

and we are unable to derive any result from the corresponding ODEs either. In Figure 8, we

illustrate a numerical example assuming that γ = 1 and k = 1. It turns out that education

supply and the market coverage are indeed higher under duopoly than under monopoly.

The intuition of Figure 8 deserves some comments. Suppose that both schools retain the

contract of the monopoly case, and hence, the labor market offers the same wage schedule.

Then, given the other’s contract, each school has an incentive to supply more education. The

reason is twofold. First, as in the observed case, each school has an incentive to supply more

education to steal the market share from the other in the competition range. Second, since

the labor market does not observe the actual tuition scheme, supplying more education can

induce the labor market to regard the worker as having higher ability, thereby increasing the

worker’s willingness to pay. Thus, both schools will rise education supply in the competition

range. This in turn relaxes the IC constraint for lower types. Since the signal jamming effect

also exists in the local monopoly range, each school will supply more education in this range,

and will also include some of those who are not served under monopoly. A noticeable feature

of Figure 8 is that the increase in education supply is relatively small at the high end of

the market. A possible intuition is that the schools have already allocated much education,

compared to that in the observed case, to these types under monopoly. Thus, the schools

find it less profitable to allocate more education to those high types.

34



5 Conclusion

In this paper, we study nonlinear pricing for horizontally differentiated products that provide

signaling value to consumers, who choose how much to purchase as a signal to the receivers.

We characterized the optimal symmetric price schedules under different market structures.

The equilibrium depends critically on whether the signal receivers observe the sellers’ price

schedules, as well as on the market structure. Under monopoly, when the receivers observe

the price schedule, the market is partially covered, and quantity is downward distorted if

there is slight horizontal differentiation. As the degree of horizontal differentiation rises, the

market coverage rises, and the downward distortion decreases. When the degree is sufficiently

high, for some intermediate level of signaling intensity, the monopolistic allocation achieves

the first-best; for higher signaling intensities, quantity is upward distorted at the low end. In

contrast, when the receivers do not observe the price schedule, the market is always partially

covered, and the allocation is more dispersed than that in the observed case. When the

market structure changes from monopoly to duopoly, market competition results in a higher

market coverage and larger quantities for both the observed and unobserved case.

By analyzing the products that provide signaling value to consumers who possess private

information, our framework derives qualitatively different welfare implications from standard

competitive nonlinear pricing models. In addition, our framework allows us to examine the

interaction between horizontal competition and the transparency of pricing, and assess the

joint effects of these two forces on the equilibrium allocation and welfare.

A Appendix

A.1 Omitted Proofs

Proof of Proposition 4.

Proof. We first prove that θmu0 > θmo0 . From (3.2) and (3.4), we have

θmu0 − θmo0 =
(γ + 1)

√
2(γ + 3)k

2(γ + 2)(γ + 3)
−

√
2(4γ + 3)k

4(γ + 1)(4γ + 3)

=
γ + 1

2(γ + 2)

√
2k

γ + 3

[
1− γ + 2

2(γ + 1)2

√
γ + 3

4γ + 3

]
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It can be easily verified that the value of the above bracket is positive for any γ > 0. Thus,

we have θmu0 > θmo0 . Similarly, we have

θmu1 − θmo1 =

√
2(4γ + 3)k

4(γ + 1)

[
1− 2(γ + 1)

γ + 2

√
γ + 3

4γ + 3

]
It can be easily verified that the value of the above bracket is negative for any γ > 0. Thus,

we have θmu1 < θmo1 . This completes the proof of the first statement.

We then prove that there exits a cutoff θ̃ ∈ (θmu0 , θmu1 ), such that zmu(θ) < zmo(θ) on

(θmo0 , θ̃), but zmu(θ) > zmo(θ) on (θ̃, 1]. From Propositions 1 and 3, we have zmu(1) > zmo(1).

Since zmu(θmu0 ) = zmo(θmo0 ) = 0 and θmu0 > θmo0 , we have that zmu(θ) intersects zmo(θ) at least

once. Let θ̃ be one of the intersecting points. We prove that θ̃ ∈ (θmu0 , θmu1 ). Suppose not,

then we have θ̃ ∈ [θmu1 , 1). We shall consider two cases: (i) θ̃ ∈ [θmu1 , θmo1 ); (ii) θ̃ ∈ (θmo1 , 1).

Suppose that (i) holds, then we have

(γ + 1)θ̃ − γ + 1

γ + 2
=
γ + 3

4
(θ̃ − θmo0 ).

It follows that

θ̃ − θmo0 =
4γ + 4

3γ + 1

(
1

γ + 2
− 1

)
< 0,

leading to a contradiction. Then, we consider (ii). If (ii) is true, then we have

(γ + 1)θ̃ − γ + 1

γ + 2
=

(γ + 2)θ̃

2
− 1

2
.

It follows that θ̃ = 1
γ+2

< θmo1 , leading to a contradiction. Thus, we have θ̃ ∈ (θmu0 , θmu1 ). It

remains to show that such a θ̃ is unique. To see this, note that zm
′
u(θ) > zm

′
o(θ) on (θmu0 , 1),

as θ̃ ∈ (θmu0 , θmu1 ). Since zmu(θ̃) = zmo(θ̃), zmu(θ) is single-crossing zmo(θ) from below at θ̃.

This completes the proof of this statement. Finally, note that both θmo0 and θmu1 converge to
1

γ+2
as k → 0. Thus, (θmo0 , θmu1 ) vanishes as k → 0. The proposition is thus proven.

Proof of Proposition 5.

Proof. We first prove that there exits a cutoff θ̃ ∈ (θmu0 , 1), such that V mu(θ) < V mo(θ) on

(θmo0 , θ̃), but V mu(θ) > V mo(θ) on (θ̃, 1]. From Lemma 1, we have

V mu(1) =
k

4
+

∫ 1

θmu1

zm
′
u(θ)dθ >

k

4
+

∫ 1

θmo1

zm
′
o(θ)dθ = V mo(1).

The inequality is due to that θmu1 < θmo1 and zm
′
u(θ) > zm

′
o(θ) on (θmu0 , 1) according to the

proof of Proposition 4. Since V mu(θmu0 ) = V mo(θmo0 ) = 0 and θmu0 > θmo0 , it follows from
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Lemma 1 and the single-crossing between zmu(θ) and zmo(θ) that V mu(θ) is single-crossing

V mo(θ) from below at some θ̃ ∈ (θmu0 , 1). This completes the proof of this statement.

We then prove that there exists a cutoff z̃ ∈ (0, zmo(1)), such that Tmu(z) > Tmo(z) on

(0, z̃), but Tmu(z) > Tmo(z) on (z̃, zmo(1)]. Let θ̃′ be the cutoff such that zmu(θ) < zmo(θ)

on (θmo0 , θ̃′), but zmu(θ) > zmo(θ) on (θ̃′, 1]. From the worker’s F.O.C. in both cases, we have

Wm′o(z)− Tm′o(z) = Cz(z, θ
mo(z)) ,Wm′u(z)− Tm′u(z) = Cz(z, θ

mu(z)).

Integrating both differential equations from 0 to zmo(1), we have

Wmo(zmo(1))− Tmo(zmo(1)) = C(zmo(1), 1),

Wmu(zmo(1))− Tmu(zmo(1)) = C(zmo(1), θmu(zmo(1))).

From Proposition 4, we have θmu(zmo(1)) < 1. Since Wmo(z) = Q(z, θmo(z)) and Wmu(z) =

Q(z, θmu(z)), Wmo(zmo(1)) > Wmu(zmo(1)). Also, since Czθ < 0, C(zmo(1), θmu(zmo(1))) >

C(zmo(1), 1). It follows that Tmo(zmo(1)) > Tmu(zmo(1)).

Moreover, since zmu(θ) < zmo(θ) on (θmo0 , θ̃′) and both zmu(θ) and zmo(θ) are increasing,

θmu(z) > θmo(z) on (θmo0 , θ̃′). Thus, Cz(z, θ
mu(z)) < Cz(z, θ

mo(z)) on (θmo0 , θ̃′). It follows

that Wmu(z)−Tmu(z) < Wmo(z)−Tmo(z) on (0, zmo(θ̃′)]. Since Wmo(z) = Q(z, θmo(z)) and

Wmu(z) = Q(z, θmu(z)) on (0, zmo(θ̃′)], Wmu(z) > Wmo(z) on (0, zmo(θ̃′)]. Thus, it is readily

confirmed that Tmu(z) > Tmo(z) on (0, zmo(θ̃′)]. However, since Tmo(zmo(1)) > Tmu(zmo(1)),

continuity implies that Tmu(z) must intersect Tmo(z) at some z̃ > zmo(θ̃′). It remains to

prove that such z̃ is unique. To see this, note that for both the observed case

Tmo(z) = S(z, θmo(z))− V mo(θmo(z)),

Tmu(z) = S(z, θmu(z))− V mu(θmu(z)).

Differentiating both equations w.r.t. z and substituting, we have

Tm
′
o(z) = Sz(z, θ

mo(z)) + Sθ(z, θ
mo(z)) · θm′o(z)− V m′o(θmo(z)) · θm′o(z)

Tm
′
u(z) = Sz(z, θ

mu(z)) + Sθ(z, θ
mu(z)) · θm′u(z)− V m′u(θmu(z)) · θm′u(z).

Substituting S(z, θ) and note that V ′(θ) = z(θ), we have

Tm
′
o(z) = (γ + 1)θmo(z)− 2z + γz · θm′o(z),

Tm
′
u(z) = (γ + 1)θmu(z)− 2z + γz · θm′u(z).

Since z̃ > zmo(θ̃′), for any z ∈ (z̃, zmo(1)), we have θmo(z) > θmu(z) by the definition of

θ̃′. From the proof of Proposition 4, we have zm
′
u(θ) > zm

′
o(θ) on (θmu0 , 1). This implies
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that θm
′
o(z) > θm

′
u(z) on (0, zmo(1)). Thus, we have Tm

′
o(z) > Tm

′
u(z) on (z̃, zmo(1)). Since

Tmo(z̃) = Tmu(z̃), such z̃ must be unique. The statement is thus proven. The rest part of

the proposition follows immediately from Proposition 4. Thus, Proposition 5 is proven.

Proof of Proposition 7.

Proof. We first prove that θdo0 < θmo0 . Suppose not, then θdo0 ≥ θmo0 . Note that θdo1 − θdo0 =

θmo1 − θmo0 =
√

2k
γ+3

, thus θdo1 ≥ θmo1 . From Propositions 1 and 6, we have

zdo(θdo1 ) = zmo(θmo1 ) =

√
2(γ + 3)k

4
.

Since θdo1 ≥ θmo1 , for θ ∈ [θmo1 , θdo1 ], zm
′
o(θ) = γ+2

2
. This implies that zmo(θdo1 ) > zdo(θdo1 ).

Moreover, from (4.1), we have that for θ ∈ [θdo1 , 1],

zd
′
o(θ) =

γ + 2

2
− 1

k
[(γ + 1)θzdo(θ)− zd2o(θ)− V do(θ)]

=
γ + 2

2
− 1

k
[S(zdo(θ), θ)− V do(θ)]

In equilibrium, each school must gain positive profit for each type in the fully covered range,

i.e., S(zdo(θ), θ) > V do(θ) for θ > θdo1 . Thus, we have for θ ∈ [θdo1 , 1],

zd
′
o(θ) < zm

′
o(θ) =

γ + 2

2
.

Since zmo(θdo1 ) > zdo(θdo1 ), we have zmo(1) > zdo(1). This contradicts the fact that zmo(1) =

zdo(1) = zfb(1). Thus, we have θdo0 < θmo0 . This also implies that θdo1 < θmo1 .

We then prove that zdo(θ) > zmo(θ) on (θdo0 , 1). First, consider θ ∈ (θdo0 , θ
do
1 ]. Since on this

interval zm
′
o(θ) = zd

′
o(θ) and θdo0 < θmo0 = γ+2

2
, we have zdo(θ) > zmo(θ) for all θ ∈ (θdo0 , θ

do
1 ].

Second, consider θ ∈ (θdo1 , θ
mo
1 ]. Since zdo(θdo1 ) = zmo(θmo1 ) and both zdo(θ) and zmo(θ) are

increasing, we have zdo(θ) > zmo(θ) for all θ ∈ (θdo1 , θ
mo
1 ]. Finally, consider θ ∈ (θmo1 , 1]. Due

to the above analysis, we have zd
′
o(θ) < zm

′
o(θ) on (θmo1 , 1]. It follows from zmo(1) = zdo(1)

that zdo(θ) > zmo(θ) for all θ ∈ (θmo1 , 1). Thus, we have zdo(θ) > zmo(θ) on (θdo0 , 1).

Since θdo0 < θmo0 and zdo(θ) > zmo(θ) on (θdo0 , 1), from Lemma 1, we have V do(θ) > V mo(θ)

on (θdo0 , 1). It is thus readily confirmed that more types, w.r.t. both horizontal and vertical

types, are served in the market under duopoly. Thus, the proposition is proven.
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